Vol. 40

Latest Volume
All Volumes
All Issues

Mode Transfigurations in Chirowaveguides

By Anatoly Poyedinchuk
Progress In Electromagnetics Research, Vol. 40, 155-176, 2003
doi:10.2528/PIER02090303

Abstract

It has been analyzed physical features of the modes behavior in a waveguide filled with the chiral medium. Both mathematical and physical models of their propagation have been defined and modes classification has been suggested. It has been shown that the same root feature in dispersion is typical both for chirowaveguide modes and for the unchiral waveguide; however the mode transfiguration is peculiar to all chirowaveguide modes and this determines the complex character of the final dispersion curves behavior. The following features are typical for chirowaveguide modes: connections between polarizations and between wave types, intersections of the dispersion curves, the spatial beatings and consecutive changes of the eigen function while moving the operating point along the dispersion curve (the mode transfiguration). The chirowaveguide performs polarization selection of propagating waves in such a way that only right-polarized waves can exist under big values of propagation constant in the chirowaveguide; the mode transfiguration is the reason of this.

Citation


Anatoly Poyedinchuk, "Mode Transfigurations in Chirowaveguides," Progress In Electromagnetics Research, Vol. 40, 155-176, 2003.
doi:10.2528/PIER02090303
http://test.jpier.org/PIER/pier.php?paper=0209033

References


    1. Jaggard, D. L. and N. Engheta, "Chirality in electrodynamics: modelling and applications," Directions in Electromagnetic Wave Modelling, H. L. Bertoni and L. B. Felsen (Eds.), Plenum Publishing Co., New York, 1993.

    2. Lakhtakia, A., "The Maxwell postulates and chiral worlds,", collection of papers: Essays on the Formal Aspects of Electromagnetic Theory, A. Lakhtakia (Ed.), 747–755, World Scientific Publishing Co. Pte. Ltd., 1993.

    3. Mariotte, F., S. A. Tretyakov, and B. Sauviac, "Modeling effective properties of chiral composites," IEEE Trans. Antennas and Propagation Magazine, Vol. 38, No. 2, 22-32, April 1996.
    doi:10.1109/74.500229

    4. He, S., M. Norgren, and T. Takenaka, "Trace formalism and explicit gradients for parameter reconstruction/design of a stratified bianisotropic slab/coating," Journal of Electromagnetic Waves and Applications, Vol. 13, 631-647, 1999.
    doi:10.1163/156939399X01069

    5. Lindell, I. V., A. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, 332, Artech House Inc., Boston, London, 1994.

    6. Lakhtakia, A., V. K. Varadan, and V. V. Varadan, "Timeharmonic electromagnetic fields in chiral media," Lecture Notes in Physics, Vol. 335, 121, Springer-Verlag, Berlin, 1989.

    7. Engheta, N. and P. Pelet, "Modes in chirowaveguides," Opt. Lett., Vol. 14, No. 11, 593-595, 1989.
    doi:10.1364/OL.14.000593

    8. Pelet, P. and N. Engheta, "The theory of chirowaveguides," IEEE Trans. Antennas Propagat., Vol. 38, No. 1, 90-98, 1990.
    doi:10.1109/8.43593

    9. Mahmoud, S. F., "On mode bifurcation in chirowaveguide with perfect electric walls," J. Electromagnetic Waves Appl. (JEWA), Vol. 6, No. 10, 1381-1392, 1992.

    10. Svedin, J. A. M., "Propagation analysis of chirowaveguides using the finite-element method," IEEE Trans. Microwave Theory Tech., Vol. 38, No. 10, 1488-1496, Oct. 1990.
    doi:10.1109/22.58690

    11. Kluskens, M. S. and E. H. Newman, "A microstrip line on a chiral substrate," IEEE Trans. Microwave Theory Tech., Vol. 39, No. 10, 1889-1891, Nov. 1991.

    12. Li, L. W., M. S. Leong, P. S. Kooi, T. S. Yeo, and K. H. Tan, "Rectangular modes and dyadic green’s functions in a rectangular chirowaveguide," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 11, 67-81, January 1999.

    13. Ditchburn, R. W., Light, 631, Blackie & Son Limited, Glasgow, London, 1952.

    14. Marcatili, E. A. I., "Dielectric rectangular waveguide and directional coupler for infrared optics," Bell System Tech. J., Vol. 48, 2071-2079, 1969.
    doi:10.1002/j.1538-7305.1969.tb01166.x

    15. Komar’, G. I., "Slot wave of the coupled cylindrical and image slot lines and the directional couplers based on them," Izvestiya VUZov, Radiophizika, Vol. 32, No. 4, 492-501, Russian, Apr. 1989.

    16. Southworth, G. C., Principles and Applications of Waveguide Transmission, 670, New York, 1950.

    17. Ramo, S. and J. R. Whinnery, Fields and Waves in Modern Radio, 631, New York, 1944.

    18. Komar’, G. I., "On eigen values and functions of the leaky wave," XXIIIrd URSI General Assembly, Vol. 2, 398, Prague, Czechoslovakia, Aug. 28–Sept. 5, 1990.

    19. Masalov, S. A., A. V. Ryzhak, O. I. Sukharevskiy, and V. M. Shkil’, The Physical Fundamentals of the Wide-Band Technologies of the Stells Type, 163, Publishing House of A. F. Mozhaiskiy MES University, Sankt-Peterburg, Russian, 1999.

    20. Shestopalov, V. P., Yu. A. Tuchkin, A. Yu. Poyedinchuk, and Yu. K. Sirenko, The New Nethods of Solving the Direct and Inverse Problems of the Diffraction Theory. The analytic regularization of the electrodynamic boundary problem, 284, Kharkov University Publishers, Kharkov, Russian, 1997.

    21. Kondratenko, A. I., The Plasma Waveguides, 232, Atomizdat, Moscow, Russian, 1976.

    22. Fainberg, Ya. B. and N. A. Hizhnyak, "The artificial anisotropic media," Zhurnal Tehnicheskoy Fiziki, Vol. 25, No. 4, 711, Russian, 1955.

    23. Clarricoats, P. J. B., "Backward waves in waveguides containing dielectrics," Proc. IEE, Vol. 108C, No. 14, 496-501, 1961.

    24. Ilarionov, Yu. A., S. B. Raevskiy, and V. Ya. Smorgonskiy, "The computation of the corrugated and partially filled waveguides," Sovetskoe Radio, V. Ya. Smorgonskiy (Ed.), 200, Moscow, Russian, 1980.

    25. Melezhik, P. N., et al., "The analytical nature of the effect of the natural oscillations mode coupling," USSR Acad. of Sciences Reports, Vol. 300, No. 6, 1356-1359, Russian, 1988.

    26. Pochanina, I. E., V. P. Shestopalov, and N. P. Yashina, "The interaction and degeneration of the natural oscillations of the open waveguide resonators," USSR Acad. of Sciences Reports, Vol. 320, No. 1, 90-95, Russian, 1991.

    27. Avetisov, V. A. and V. I. Goldanskiı, "Physical aspects of mirror symmetry breaking in the bioorganic world," Uspekhi Fizicheskikh. Nauk (UFN), Vol. 166, No. 8, 873-891, Russian, August 1996.
    doi:10.3367/UFNr.0166.199608d.0873

    28. Chernavskiı, D. S., "The origin of life and thinking from the modern physics point of view," Uspekhi Fizicheskikh. Nauk (UFN), Vol. 170, No. 2, 157-183, Russian, February 2000.
    doi:10.3367/UFNr.0170.200002c.0157

    29. Holmstedt, B., H. Frank, B. Testa, and A. R. Liss, Chirality and Biological Activity, New York, 1990.