In this paper, we investigate the electromagnetic scattering by a multilayer gyrotropic bianisotropic circular cylinder in free space. The coupled wave equations of longitudinal field components in the gyrotropic bianisotropic medium are derived. The eigenfunction expansion method is used to solve the scattering problem after uncoupling the coupled wave equations. A 12 × 12 or 16 × 16 linear algebraic equation is solved for two cases: one with the center being a perfect electric conducting (PEC) cylinder; and one without the PEC center, respectively. The gyrotropic bianisotropic media can be degenerated into gyrotropic medium, uniaxial bianisotropic medium, biisotropic medium and chiral medium etc. Numerical results presented for the last case was shown to agree exactly with published results. Numerical results of electromagnetic scattering by gyrotropic bianisotropic circular cylinders are presented also.
2. Bohren, C. F., "Scattering of electromagnetic waves by an optically active cylinder," J. Colloid Interface Sci., Vol. 66, 105-109, 1978.
doi:10.1016/0021-9797(78)90189-3
3. Uslenghi, P. L. E., "Scattering by an impedance sphere coated with chiral layer," Electromagn., Vol. 10, 201-211, Jan.–Jun. 1990.
doi:10.1080/02726349008908236
4. Kluskens, M. S. and E. H. Newman, "Scattering by a chiral cylinder of arbitrary cross section," IEEE Trans. Antennas Propagat., Vol. 38, 1448-1455, Sept. 1990.
doi:10.1109/8.56998
5. Kluskens, M. S. and E. H. Newman, "Scattering by a multilayer chiral cylinder," IEEE Trans. Antennas Propagat., Vol. 39, 91-96, Jan. 1991.
doi:10.1109/8.64441
6. Zhang, M. and W. X. Zhang, "Scattering of electromagnetic waves from a chiral cylinder of arbitrary cross section — GMT approach," Microwave & Opt. Technol. Lett., Vol. 10, No. 1, 25, 1995.
doi:10.1002/mop.4650100109
7. Al-Kanhal, M. A. and E. Arvas, "Electromagnetic scattering from a chiral cylinder of Arbitrary cross section," IEEE Trans. Antennas Propagat., Vol. 44, 1041-1048, July 1996.
8. Monzon, J. C., "Scattering by a biisotropic body," IEEE Trans. Antennas Propagat., Vol. 43, 1288-1296, Nov. 1995.
9. Zhang, M. and W. Hong, "Electromagnetic scattering by a bianisotropic cylinder," Proc. IEEE Antennas Propagat. Soc. Int. Symp., 910-913, Montreal Canada, July 1997.
10. Cheng, D. J., "Vector-wave-function theory of uniaxial bianisotropic semiconductor material," Phys. Rev. E, Vol. 56, No. 2, 2321-2324, 1997.
doi:10.1103/PhysRevE.56.2321
11. Yin, W. Y. and L. W. Li, "Multiple scattering from gyrotropic bianisotropic cylinders of arbitrary cross sections using the modeling technique," Phys. Rev. E, Vol. 60, No. 1, 918-925, 1999.
doi:10.1103/PhysRevE.60.918
12. Shanker, B., S. K. Han, and E. Michielssen, "A fast multipole approach to analyze scattering from an inhomogeneous bianisotropic object embedded in a chiral host," Radio Sci., Vol. 33, No. 1, 17-31, 1998.
doi:10.1029/97RS02469
13. Olyslager, F., "Time-harmonic two- and three-dimensional closedform Green’s dyadics for gyrotropic, bianisotropic and anisotropic media," Electromagn., Vol. 17, No. 4, 369-386, 1997.
doi:10.1080/02726349708908546
14. Olyslager, F., "Time-harmonic two- and three-dimensional Green dyadics for a special class of gyrotropic bianisotropic media," IEE Proc. Microw. Antennas Propag., Vol. 143, No. 5, 413-416, Oct. 1996.
doi:10.1049/ip-map:19960589
15. Beker, B., K. R. Umashankar, and A. Taflove, "Numerical analysis and validation of the combined field surface integral equations for electromagnetic scattering by arbitrary shaped two-dimensional anisotropic objects," IEEE Trans. Antennas Propagat., Vol. 37, No. 12, 1573-1581, Dec. 1989.
doi:10.1109/8.45100