Vol. 40

Latest Volume
All Volumes
All Issues

Scattering by a Gyrotropic Bianisotropic Cylinder of Arbitrary Cross Section: an Analysis Using Generalized Multipole Technique

By Tat Yeo and Mook-Seng Leong
Progress In Electromagnetics Research, Vol. 40, 315-333, 2003
doi:10.2528/PIER02103101

Abstract

The electromagnetic scattering by a homogeneous gyrotropic bianisotropic cylinder of arbitrary cross section is analyzed in this paper using the generalized multipole technique (GMT) where only the longitudinal fictitious electric and magnetic currents are involved. The general scattering solution is formulated and numerical results of near fields and bistatic radar cross sections are presented for four specific examples, namely, a chiral circular cylinder, a chiral square cylinder, a gyrotropic bianisotropic circular cylinder, and a gyrotropic bianisotropic "lens" cylinder. Results obtained using the GMT for the chiral and the gyrotropic bianisotropic circular cylinders are in excellent agreement with those obtained from the eigen-function expansion. Results of the GMT for the chiral square cylinder are in excellent agreement with those obtained from the method of moments (MoM) solution.

Citation


Tat Yeo and Mook-Seng Leong, "Scattering by a Gyrotropic Bianisotropic Cylinder of Arbitrary Cross Section: an Analysis Using Generalized Multipole Technique," Progress In Electromagnetics Research, Vol. 40, 315-333, 2003.
doi:10.2528/PIER02103101
http://test.jpier.org/PIER/pier.php?paper=0210311

References


    1. Bohren, C. F., "Scattering of electromagnetic waves by an optically active cylinder," J. Colloid Interface Sci., Vol. 66, 105-109, 1978.
    doi:10.1016/0021-9797(78)90189-3

    2. Bohren, C. F., "Light scattering by an optically active sphere," Chem. Phys. Lett., Vol. 29, 458-462, 1974.
    doi:10.1016/0009-2614(74)85144-4

    3. Uslenghi, P. L. E., "Scattering by an impedance sphere coated with chiral layer," Electromagn., Vol. 10, 201-211, 1990.
    doi:10.1080/02726349008908236

    4. Kluskens, M. S. and E. H. Newman, "Scattering by a multilayer chiral cylinder," IEEE Trans. Antennas Propagat., Vol. 39, 91-96, Jan. 1991.
    doi:10.1109/8.64441

    5. Kluskens, M. S. and E. H. Newman, "Scattering by a chiral cylinder of arbitrary cross section," IEEE Trans. Antennas Propagat., Vol. 38, 1448-1455, Sept. 1990.
    doi:10.1109/8.56998

    6. Al-Kanhal, M. A. and E. Arvas, "Electromagnetic scattering from a chiral cylinder of arbitrary cross section," IEEE Trans. Antennas Propagat., Vol. 44, 1041-1048, July 1996.
    doi:10.1109/8.504313

    7. Zhang, M. and W. X. Zhang, "Scattering of electromagnetic waves from a chiral cylinder of arbitrary cross section — GMT approach," Microwave & Opt. Technol. Lett., Vol. 10, No. 1, 22-25, 1995.
    doi:10.1002/mop.4650100109

    8. Monzon, J. C., "Scattering by a biisotropic body," IEEE Trans. Antennas Propagat., Vol. 43, 1288-1296, Nov. 1995.

    9. Olyslager, F., "Time-harmonic two- and three-dimensional closedform Green’s dyadics for gyrotropic, bianisotropic and anisotropic media," Electromagn., Vol. 17, No. 4, 369-386, 1997.
    doi:10.1080/02726349708908546

    10. Zhang, M. and W. Hong, "Electromagnetic scattering by a bianisotropic cylinder," Proc. IEEE Antennas Propagat. Soc. Int. Symp., 910-913, Montreal Canada, July 1997.

    11. Cheng, D. J., "Vector-wave-function theory of uniaxial bianisotropic semiconductor material," Phys. Rev. E, Vol. 56, No. 2, 2321-2324, 1997.
    doi:10.1103/PhysRevE.56.2321

    12. Yin, W. Y. and L. W. Li, "Multiple scattering from gyrotropic bianisotropic cylinders of arbitrary cross sections using the modeling technique," Phys. Rev. E, Vol. 60, No. 1, 918-925, 1999.
    doi:10.1103/PhysRevE.60.918

    13. Shanker, B., S. K. Han, and E. Michielssen, "A fast multipole approach to analyze scattering from an inhomogeneous bianisotropic object embedded in a chiral host," Radio Sci., Vol. 33, No. 1, 17-31, 1998.
    doi:10.1029/97RS02469

    14. Hafner, C., The Generalized Multipole Technique for Computational Electromagnetics, Artech House, Inc., 1991.

    15. Leviatan, Y., P. G. Li, A. T. Adams, and J. Perini, "Singlepost inductive obstacle in rectangular waveguide," IEEE Trans. Microwave Theory Tech., Vol. 31, 806-811, Oct. 1983.

    16. Leviatan, Y. and A. Boag, "Analysis of electromagnetic scattering from dielectric cylinders using a multifilament current model," IEEE Trans. Antennas Propagat., Vol. 35, 1119-1127, Oct. 1987.

    17. Leviatan, Y., Am. Boag, and Al. Boag, "Generalized formulations for electromagnetic scattering from perfectly conducting and homogeneous material bodies — theory and numerical solution," IEEE Trans. Antennas Propagat., Vol. 36, 1722-1734, Dec. 1988.
    doi:10.1109/8.14394

    18. Cheng, C. H., "GMT/SDT for underground EM scattering,", Ph.D. dissertation, Southeast University, China, 1993 (In Chinese).

    19. Na, H. G. and H. T. Kim, "Scattering analysis of conducting bodies of revolution using fictitious currents and point-matching," IEEE Trans. Antennas Propagat., Vol. 43, 426-430, Apr. 1995.

    20. Zhang, M. and Y. Shu, "Generalized multipole technique for electromagnetic scattering by arbitrarily shaped two-dimensional objects," Microwave & Opt. Technol. Lett., Vol. 10, No. 6, 363-365, 1995.
    doi:10.1002/mop.4650100617

    21. Na, H. G. and H. T. Kim, "Convergence of the fictitious current model," IEE. Proc. — H, Vol. 143, No. 2, 163-168, 1996.

    22. Kang, T. W. and H. T. Kim, "Basis function considerations for the methods of moments using the fictitious current model," IEEE Trans. Antennas Propagat., Vol. 47, No. 6, 1118-1120, June 1999.
    doi:10.1109/8.777140

    23. Beker, B., K. R. Umashankar, and A. Taflove, "Numerical analysis and validation of the combined field surface integral equations for electromagnetic scattering by arbitrary shaped two-dimensional anisotropic objects," IEEE Trans. Antennas Propagat., Vol. 37, No. 12, 1573-1581, Dec. 1989.
    doi:10.1109/8.45100