Vol. 82

Latest Volume
All Volumes
All Issues
2008-03-01

Schwarz-Krylov Subspace Method for MLFMM Analysis of Electromagnetic Wave Scattering Problems

By Ping-Liang Rui, Ru-Shan Chen, Zhiwei Liu, and Ya-Ning Gan
Progress In Electromagnetics Research, Vol. 82, 51-63, 2008
doi:10.2528/PIER08013003

Abstract

In this paper, the high-order hierarchical basis functions are used for solving electromagnetic wave scattering problems. The multilevel fast multipole method (MLFMM) is applied to accelerate the matrix-vector product operation and the Schwarz method is employed to speed up the convergence rate of the Krylov subspace iterative methods. The efficiency of the proposed approach is studied on several numerical model problems and the comparison with conventional Kryloviterativ e methods is made. Numerical results demonstrate that the combination of the Schwarz method and the Krylovsubspace iterative method is very effective with MLFMM and can reduce the overall simulation time significantly.

Citation


Ping-Liang Rui, Ru-Shan Chen, Zhiwei Liu, and Ya-Ning Gan, "Schwarz-Krylov Subspace Method for MLFMM Analysis of Electromagnetic Wave Scattering Problems," Progress In Electromagnetics Research, Vol. 82, 51-63, 2008.
doi:10.2528/PIER08013003
http://test.jpier.org/PIER/pier.php?paper=08013003

References


    1. Harrington, R. F., Field Computation by Moment Methods, R. E. Krieger, Malabar, Fla., 1968.

    2. Hatamzadeh-Varmazyar, S., M. Naser-Moghadasi, and Z. Masouri, "A moment method simulation of electromagnetic scattering from conducting bodies," Progress In Electromagnetics Research, Vol. 81, 99-119, 2008.
    doi:10.2528/PIER07122502

    3. Wang, S., X. Guan, D.Wang, X. Ma, and Y. Su, "Electromagnetic scattering by mixed conducting/dielectric objects using higherorder MOM," Progress In Electromagnetics Research, Vol. 66, 51-63, 2006.
    doi:10.2528/PIER06092101

    4. Li, C. and Z. Shen, "Electromagnetic scattering by a conducting cylinder coated with metamaterials," Progress In Electromagnetics Research, Vol. 42, 91-105, 2003.
    doi:10.2528/PIER03012901

    5. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas and Propagat., Vol. 30, No. 3, 409-418, 1982.
    doi:10.1109/TAP.1982.1142818

    6. Donepudi, K. C., et al., "A novel implementation of multilevel fast multipole algorithm for higher order galerkin method," IEEE Trans. Antennas and Propagat., Vol. 48, No. 8, 1192-1197, 2000.
    doi:10.1109/8.884486

    7. Kang, G., J. M. Song, and W. C. Chew, "A novel grid-robust higher-order vector basis functions for the method of moments," IEEE Trans. Antennas and Propagat., Vol. 49, No. 6, 908-915, 2001.
    doi:10.1109/8.931148

    8. Andersen, L. S. and J. L. Volakis, "Development and application of a novel class of hierarchical tangential vector finite elements for electromagnetics," IEEE Trans. Antennas and Propagat., Vol. 47, No. 1, 112-120, 1999.
    doi:10.1109/8.753001

    9. Webb, J. P., "Hierarchical vector basis functions of arbitrary order for triangular and tetrahedral finite elements," IEEE Trans. Antennas and Propagat., Vol. 47, No. 8, 1244-1253, 1999.
    doi:10.1109/8.791939

    10. Chew, W. C., J. M. Jin, E. Midielssen, and J.M. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, MA, 2001.

    11. Zhao, X. W., C.-H. Liang, and L. Liang, "Multilevel fast multipole algorithm for radiation characteristics of shipborne antennas above seawater," Progress In Electromagnetics Research, Vol. 81, 291-302, 2008.
    doi:10.2528/PIER08012003

    12. Zhang, Y. J. and E. P. Li, "Fast multipole accelerated scattering matrix method for multiple scattering of a large number of cylinders," Progress In Electromagnetics Research, Vol. 72, 105-126, 2007.
    doi:10.2528/PIER07030503

    13. Wan, J. X., T. M. Xiang, and C.-H. Liang, "The fast multipole algorithm for analysis of large-scale microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 49, 239-255, 2004.
    doi:10.2528/PIER04042201

    14. Pan, Y. C. and W. C. Chew, "A fast multipole method for embedded structure in a stratified medium," Progress In Electromagnetics Research, Vol. 44, 1-38, 2004.
    doi:10.2528/PIER03050602

    15. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas and Propagat., Vol. 45, No. 10, 1488-1493, 1997.
    doi:10.1109/8.633855

    16. Sertel, K. and J. L. Volakis, "Incomplete LU preconditioner for FMM implementation," Micro. Opt. Tech. Lett., Vol. 26, No. 7, 265-267, 2000.
    doi:10.1002/1098-2760(20000820)26:4<265::AID-MOP18>3.0.CO;2-O

    17. Lee, J., C. C. Lu, and J. Zhang, "Incomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems," J. Comput. Phy., Vol. 185, 158-175, 2003.
    doi:10.1016/S0021-9991(02)00052-9

    18. Chow, E. and Y. Saad, "Experimental study of ILU preconditioners for indefinite matrices," J. Comput. Appl. Math., Vol. 86, No. 2, 387-414, 1997.
    doi:10.1016/S0377-0427(97)00171-4

    19. Schwarz, H. A., Gesammelte Mathematische Abhandlungen, Vol. 2, 133-143, Springer-Verlag, Berlin, Germany, 1890.

    20. Saad, Y., Iterative Methods for Sparse Linear Systems, PWS Publishing Company, Boston, 1995.

    21. Woo, A. C., H. T. G. Wang, M. J. Schuh, and M. L. Sanders, "EM programmer’s notebook-benchmark radar targets for the validation of computational electromagnetics programs," IEEE Trans. Antennas and Propagat., Vol. 35, No. 1, 84-89, 1993.

    22. Rui, P. L. and R. S. Chen, "An efficient sparse approximate inverse preconditioning for FMM implementation," Micro. Opt. Tech. Lett., Vol. 49, No. 7, 1746-1750, 2007.
    doi:10.1002/mop.22538

    23. Rui, P. L., S. S. Li, and R. S. Chen, "Application of SSOR preconditioned GMRESR algorithm for FEM analysis of Helmholtz equations," IEEE Int’l Symposium on Antennas and Propagation, 1173-1176, 2006.

    24. Yuan, H. W., S. X. Gong, X. Wang, and W. T. Wang, "Scattering analysis of a printed dipole antenna using PBG structures," Progress In Electromagnetics Research B, Vol. 1, 189-195, 2008.
    doi:10.2528/PIERB07102302

    25. Varmazyar, S. H. and M. N. Moghadasi, "An integral equation modeling of electromagnetic scattering from the surfaces of arbitrary resistance distribution," Progress In Electromagnetics Research B, Vol. 3, 157-172, 2008.
    doi:10.2528/PIERB07121404

    26. Varmazyar, S. H. and M. N. Moghadasi, "New numerical method for determining the scattered electromagnetic fields from thin wires," Progress In Electromagnetics Research B, Vol. 3, 207-218, 2008.
    doi:10.2528/PIERB07121303

    27. Ho, M., "Scattering of electromagnetic waves from vibrating perfect surfaces: Simulation using relativistic boundary conditions," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 425-433, 2006.
    doi:10.1163/156939306776117108

    28. Li, Y. L., J. Y. Huang, and M. J. Wang, "Scattering cross section for airborne and its application," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2341-2349, 2007.
    doi:10.1163/156939307783134254

    29. Zhong, X. J., T. J. Cui, Z. Li, Y. B. Tao, and H. Lin, "Terahertz-wave scattering by perfectly electrical conducting objects," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2331-2340, 2007.
    doi:10.1163/156939307783134443

    30. Bucci, O. M., G. Delia, and M. Santojanni, "A fast multipole approach to 2D scattering evaluation based on a non redundant implementation of the method of auxiliary sources," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 13, 1715-1725, 2006.
    doi:10.1163/156939306779292174

    31. Pan, X. M. and X. Q. Sheng, "A highly efficient parallel approach of multi-level fast multipole algorithm," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 8, 1081-1092, 2006.
    doi:10.1163/156939306776930321