Vol. 82

Latest Volume
All Volumes
All Issues
2008-03-20

Analysis of the Optical Transmission through the Metal Plate with Slit Array

By Yong Fu, Kang Li, and Fanmin Kong
Progress In Electromagnetics Research, Vol. 82, 109-125, 2008
doi:10.2528/PIER08022013

Abstract

The near and far field properties of the large-scale metal plate with slit array are studied by applying the finite-difference timedomain (FDTD) method. The far region scattering properties at different incident angles are also discussed. We find out the enhanced optical transmission (EOT) through the metal plate with suitable placed narrow slit array is excited by the interaction of the surface plasmon polarization (SPP) and the Fabry-Perot resonance (FPR), and the dielectric substrate has significant influence on the transmission properties by affecting the electromagnetic field distribution on the metal-dielectric interface. Furthermore, the scattering field would be reduced and the transmission efficiency could be improved by the phase shift caused by the dielectric substrate. These unusual properties suggest possible applications to light-transparent metal contacts, stealth materials, etc.

Citation


Yong Fu, Kang Li, and Fanmin Kong, "Analysis of the Optical Transmission through the Metal Plate with Slit Array," Progress In Electromagnetics Research, Vol. 82, 109-125, 2008.
doi:10.2528/PIER08022013
http://test.jpier.org/PIER/pier.php?paper=08022013

References


    1. Ebbesen, T. W., H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, "Extraordinary optical transmission through sub-wavelength hole arrays," Nature, Vol. 391, No. 6668, 667-669, 1998.
    doi:10.1038/35570

    2. Genet, C. and T. W. Ebbesen, "Light in tiny holes," Nature, Vol. 445, No. 7123, 46, 2007.
    doi:10.1038/nature05350

    3. Beruete, M., M. Sorolla, and I. Campillo, "Left-handed extraordinary optical transmission through a photonic crystal of sub-wavelength hole arrays," Opt. Express, Vol. 14, No. 12, 5445-5455, 2006.
    doi:10.1364/OE.14.005445

    4. Mary, A., S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Physical Review B, Vol. 76, No. 19, 195414, 2007.
    doi:10.1103/PhysRevB.76.195414

    5. Ghazi, G. and M. Shahabadi, "Modal analysis of extraordinary transmission through an array of subwavelength slits," Progress In Electromagnetics Research, Vol. 79, 59-74, 2008.
    doi:10.2528/PIER07092402

    6. Lalanne, P. and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nature Phys., Vol. 2, No. 8, 551-556, 2006.
    doi:10.1038/nphys364

    7. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Spring-Verlag, Berlin, 1988.

    8. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.
    doi:10.1126/science.1114849

    9. Suyama, T. and Y. Okuno, "Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement," Progress In Electromagnetics Research, Vol. 72, 91-103, 2007.
    doi:10.2528/PIER07030301

    10. Lin, L., R. J. Blaikie, and R. J. Reeves, "Surface-plasmon enhanced optical transmission through planar metal films," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1721-1728, 2005.
    doi:10.1163/156939305775696801

    11. Kong, F. M., K. Li, B. I. Wu, H. Huang, H. Chen, and J. A. Kong, "Propagation properties of the SPP nano scale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
    doi:10.2528/PIER07070203

    12. Liaw, J. W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
    doi:10.1163/156939305775696865

    13. Talele, K. and D. S. Patil, "Analysis of wave function, energy and transmission coefficients in Gan/Algan superlattice nanostructures," Progress In Electromagnetics Research, Vol. 81, 237-252, 2008.
    doi:10.2528/PIER08011102

    14. Yee, K., "Numerical solution of inital boundary value problems involving maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 3, 302-307, 1966.
    doi:10.1109/TAP.1966.1138693

    15. Kong, J. A., Electromagnetic Wave Theory, Wiley & Sons, New York, 1986.

    16. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the finite difference frequency domain method," Progress In Electromagnetics Research, Vol. 67, 1-4, 2007.
    doi:10.2528/PIER06083104

    17. Oubre, C. and P. Nordlander, "Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method," J. Phys. Chem. B, Vol. 108, No. 46, 17740-17747, 2004.
    doi:10.1021/jp0473164

    18. Ali, M. and S. Sanyal, "FDTD analysis of dipole antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 67, 341-359, 2007.
    doi:10.2528/PIER06122801

    19. Zhao, Y., P. Belov, and Y. Hao, "Accurate modeling of the optical properties of left-handed media using a finite-difference time-domain method," Phys. Rev. E, Vol. 75, No. 3, 37602-37605, 2007.
    doi:10.1103/PhysRevE.75.037602

    20. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Wave Applications, Vol. 21, No. 12, 1905-1914, 2007.
    doi:10.1163/156939307783152777

    21. Hu, X. J. and D. B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
    doi:10.2528/PIER07101902

    22. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to cicrowave/mm-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
    doi:10.2528/PIER07081401

    23. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed., Artech House, Boston, 2000.

    24. Ramahi, O. M., "Near-and far-field calculations in FDTD simulations using Kirchhoff surface integral representation," IEEE Trans. Antennas Propagat., Vol. 45, No. 5, 753-759, 1997.
    doi:10.1109/8.575616

    25. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Wave Applications, Vol. 21, No. 12, 1905-1914, 2007.
    doi:10.1163/156939307783152777

    26. Hu, X. J. and D. B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
    doi:10.2528/PIER07101902

    27. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to cicrowave/mm-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
    doi:10.2528/PIER07081401

    28. Berenger, J. P., "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 127, No. 2, 363-379, 1996.
    doi:10.1006/jcph.1996.0181

    29. Weber, M. J., Handbook of Optical Materials, CRC Press, New York, 2003.

    30. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation fortransient propagation in plasma," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 29-34, 1991.
    doi:10.1109/8.64431