The near and far field properties of the large-scale metal plate with slit array are studied by applying the finite-difference timedomain (FDTD) method. The far region scattering properties at different incident angles are also discussed. We find out the enhanced optical transmission (EOT) through the metal plate with suitable placed narrow slit array is excited by the interaction of the surface plasmon polarization (SPP) and the Fabry-Perot resonance (FPR), and the dielectric substrate has significant influence on the transmission properties by affecting the electromagnetic field distribution on the metal-dielectric interface. Furthermore, the scattering field would be reduced and the transmission efficiency could be improved by the phase shift caused by the dielectric substrate. These unusual properties suggest possible applications to light-transparent metal contacts, stealth materials, etc.
2. Genet, C. and T. W. Ebbesen, "Light in tiny holes," Nature, Vol. 445, No. 7123, 46, 2007.
doi:10.1038/nature05350
3. Beruete, M., M. Sorolla, and I. Campillo, "Left-handed extraordinary optical transmission through a photonic crystal of sub-wavelength hole arrays," Opt. Express, Vol. 14, No. 12, 5445-5455, 2006.
doi:10.1364/OE.14.005445
4. Mary, A., S. G. Rodrigo, L. Martin-Moreno, and F. J. Garcia-Vidal, "Theory of light transmission through an array of rectangular holes," Physical Review B, Vol. 76, No. 19, 195414, 2007.
doi:10.1103/PhysRevB.76.195414
5. Ghazi, G. and M. Shahabadi, "Modal analysis of extraordinary transmission through an array of subwavelength slits," Progress In Electromagnetics Research, Vol. 79, 59-74, 2008.
doi:10.2528/PIER07092402
6. Lalanne, P. and J. P. Hugonin, "Interaction between optical nano-objects at metallo-dielectric interfaces," Nature Phys., Vol. 2, No. 8, 551-556, 2006.
doi:10.1038/nphys364
7. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Spring-Verlag, Berlin, 1988.
8. Ozbay, E., "Plasmonics: Merging photonics and electronics at nanoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.
doi:10.1126/science.1114849
9. Suyama, T. and Y. Okuno, "Enhancement of TM-TE mode conversion caused by excitation of surface plasmons on a metal grating and its application for refractive index measurement," Progress In Electromagnetics Research, Vol. 72, 91-103, 2007.
doi:10.2528/PIER07030301
10. Lin, L., R. J. Blaikie, and R. J. Reeves, "Surface-plasmon enhanced optical transmission through planar metal films," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1721-1728, 2005.
doi:10.1163/156939305775696801
11. Kong, F. M., K. Li, B. I. Wu, H. Huang, H. Chen, and J. A. Kong, "Propagation properties of the SPP nano scale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
doi:10.2528/PIER07070203
12. Liaw, J. W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
doi:10.1163/156939305775696865
13. Talele, K. and D. S. Patil, "Analysis of wave function, energy and transmission coefficients in Gan/Algan superlattice nanostructures," Progress In Electromagnetics Research, Vol. 81, 237-252, 2008.
doi:10.2528/PIER08011102
14. Yee, K., "Numerical solution of inital boundary value problems involving maxwell’s equations in isotropic media," IEEE Trans. Antennas Propagat., Vol. 14, No. 3, 302-307, 1966.
doi:10.1109/TAP.1966.1138693
15. Kong, J. A., Electromagnetic Wave Theory, Wiley & Sons, New York, 1986.
16. Kuzu, L., V. Demir, A. Z. Elsherbeni, and E. Arvas, "Electromagnetic scattering from arbitrarily shaped chiral objects using the finite difference frequency domain method," Progress In Electromagnetics Research, Vol. 67, 1-4, 2007.
doi:10.2528/PIER06083104
17. Oubre, C. and P. Nordlander, "Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method," J. Phys. Chem. B, Vol. 108, No. 46, 17740-17747, 2004.
doi:10.1021/jp0473164
18. Ali, M. and S. Sanyal, "FDTD analysis of dipole antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 67, 341-359, 2007.
doi:10.2528/PIER06122801
19. Zhao, Y., P. Belov, and Y. Hao, "Accurate modeling of the optical properties of left-handed media using a finite-difference time-domain method," Phys. Rev. E, Vol. 75, No. 3, 37602-37605, 2007.
doi:10.1103/PhysRevE.75.037602
20. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Wave Applications, Vol. 21, No. 12, 1905-1914, 2007.
doi:10.1163/156939307783152777
21. Hu, X. J. and D. B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902
22. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to cicrowave/mm-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401
23. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Ed., Artech House, Boston, 2000.
24. Ramahi, O. M., "Near-and far-field calculations in FDTD simulations using Kirchhoff surface integral representation," IEEE Trans. Antennas Propagat., Vol. 45, No. 5, 753-759, 1997.
doi:10.1109/8.575616
25. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H. L. Li, "FDTD study on scattering of metallic column covered by double-negative metamaterial," Journal of Electromagnetic Wave Applications, Vol. 21, No. 12, 1905-1914, 2007.
doi:10.1163/156939307783152777
26. Hu, X. J. and D. B. Ge, "Study on conformal FDTD for electromagnetic scattering by targets with thin coating," Progress In Electromagnetics Research, Vol. 79, 305-319, 2008.
doi:10.2528/PIER07101902
27. Afrooz, K., A. Abdipour, A. Tavakoli, and M. Movahhedi, "Time domain analysis of active transmission line using FDTD technique (application to cicrowave/mm-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
doi:10.2528/PIER07081401
28. Berenger, J. P., "Three-dimensional perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 127, No. 2, 363-379, 1996.
doi:10.1006/jcph.1996.0181
29. Weber, M. J., Handbook of Optical Materials, CRC Press, New York, 2003.
30. Luebbers, R. J., F. Hunsberger, and K. S. Kunz, "A frequency-dependent finite-difference time-domain formulation fortransient propagation in plasma," IEEE Trans. Antennas Propagat., Vol. 39, No. 1, 29-34, 1991.
doi:10.1109/8.64431