Vol. 82

Latest Volume
All Volumes
All Issues
2008-03-30

Analysis of the Surface Magnetoplasmon Modes in the Semiconductor Slit Waveguide at Terahertz Frequencies

By Fanmin Kong, Kang Li, Hui Huang, Bae-Ian Wu, and Jin Au Kong
Progress In Electromagnetics Research, Vol. 82, 257-270, 2008
doi:10.2528/PIER08031224

Abstract

The propagation properties of surface plasmon polaritons (SPP) modes and surface magnetoplasmon polaritons (SMP) modes in a semiconductor slit waveguide are analyzed by the effective dielectric constant approach, and the interaction of the external magnetic field with the dispersion properties and field distributions of SMP modes in the Voigt configuration are emphasized in our analysis. Both the symmetric structure and the asymmetric structure are discussed in details. In contrast to the SPP modes which have one propagation band below the plasmon frequency only, the SMP modes have both the low-frequency propagation band below the plasmon frequency and the high-frequency propagation band above the plasmon frequency. When the external magnetic field increases, the two bands of the SMP modes will separate further in frequency, and the even symmetric distribution of the fundamental mode, which usually associates with the SPP mode, will be destroyed. These results can provide some guidance for the design of the tunable semiconductor waveguide in the terahertz regime.

Citation


Fanmin Kong, Kang Li, Hui Huang, Bae-Ian Wu, and Jin Au Kong, "Analysis of the Surface Magnetoplasmon Modes in the Semiconductor Slit Waveguide at Terahertz Frequencies," Progress In Electromagnetics Research, Vol. 82, 257-270, 2008.
doi:10.2528/PIER08031224
http://test.jpier.org/PIER/pier.php?paper=08031224

References


    1. Zayats, A. V., I. I. Smolyaninov, and A. A. Maradudin, "Nano-optics of surface plasmon polaritons," Phys. Rep., Vol. 408, No. 3-4, 131-314, 2005.
    doi:10.1016/j.physrep.2004.11.001

    2. Prasad, P. N., Nanophotonics, Wiley-Interscience, New Jersey, 2004.

    3. Ozbay, E., "Plasmonics: Merging photonics and electronics at manoscale dimensions," Science, Vol. 311, No. 5758, 189-193, 2006.
    doi:10.1126/science.1114849

    4. Chang, C. K., et al., "Experimental analysis of surface plasmon behavior in metallic circular slits," Appl. Phys. Lett., Vol. 90, No. 6, 2007.

    5. Gordon, R., L. K. S. Kumar, and A. G. Brolo, "Resonant light transmission through a nanohole in a metal film," IEEE Trans. on Nanotechnology, Vol. 5, No. 3, 291-294, 2006.
    doi:10.1109/TNANO.2006.874057

    6. Lin, L., R. J. Reeves, and R. J. Blaikie, "Surface-plasmon-enhanced light transmission through planar metallic films," Phys. Rev. B, Vol. 74, No. 15, 2006.
    doi:10.1103/PhysRevB.74.155407

    7. Xiao, S., N. A. Mortensen, and M. Qiu, "Enhanced transmission through arrays of subwavelength holes in gold films coated by a finite dielectric layer," Arxiv preprint Physics, 0703092, 2007.

    8. Kong, F., et al., "Surface plasmon mode analysis of nanoscale metallic rectangular waveguide," Opt. Exp., Vol. 15, No. 19, 12331-12337, 2007.
    doi:10.1364/OE.15.012331

    9. Lin, L., R. J. Blaikie, and R. J. Reeves, "Surface-plasmon-enhanced optical transmission through planar metal films," Journal of Electromagnetic Waves and Applications, Vol. 19, 1721-1728, 2005.
    doi:10.1163/156939305775696801

    10. Seidel, J., "Surface plasmon transmission across narrow grooves in thin silver films," Appl. Phys. Lett., Vol. 82, No. 9, 1368, 2003.
    doi:10.1063/1.1558219

    11. Pile, D. F. P. and D. K. Gramotnev, "Channel plasmon-polariton in a triangular groove on a metal surface," Opt. Lett., Vol. 29, No. 10, 1069-1071, 2004.
    doi:10.1364/OL.29.001069

    12. Bozhevolnyi, S. I., et al., "Channel plasmon-polariton guiding by subwavelength metal grooves," Phys. Rev. Lett., Vol. 95, No. 4, 46802, 2005.
    doi:10.1103/PhysRevLett.95.046802

    13. Breukelaar, I., R. Charbonneau, and P. Berini, "Long-range surface plasmon-polariton mode cutoff and radiation," Appl. Phys. Lett., Vol. 88, No. 5, 051119, 2006.
    doi:10.1063/1.2172727

    14. Maier, S. A., "Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: Estimation of waveguide loss," Appl. Phys. Lett., Vol. 81, No. 9, 1714, 2002.
    doi:10.1063/1.1503870

    15. Liaw, J. W., M. K. Kuo, and C. N. Liao, "Plasmon resonances of spherical and ellipsoidal nanoparticles," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 13, 1787-1794, 2005.
    doi:10.1163/156939305775696865

    16. Imura, K., T. Nagahara, and H. Okamoto, "Near-field optical imaging of plasmon modes in gold nanorods," J. Chem. Phys., Vol. 122, No. 15, 154701, 2005.
    doi:10.1063/1.1873692

    17. El-Kady, I., et al., "Metallic photonic crystals at optical wavelengths," Phys. Rev. B, Vol. 62, No. 23, 15299-15302, 2000.
    doi:10.1103/PhysRevB.62.15299

    18. Xu, C., et al., "Semiconductor-based tunable photonic crystals by means of an external magnetic field," Phys. Rev. B, Vol. 68, No. 19, 193201, 2003.
    doi:10.1103/PhysRevB.68.193201

    19. Lan, Y. C., Y. C. Chang, and P. H. Lee, "Manipulation of tunneling frequencies using magnetic fields for resonant tunneling effects of surface plasmons," Appl. Phys. Lett., Vol. 90, 171114, 2007.
    doi:10.1063/1.2732827

    20. Rivas, J. G., et al., "Transmission of THz radiation through InSb gratings of subwavelength apertures," Appl. Opt., Vol. 4, S83, 2002.

    21. Rivas, J. G., et al., "Enhanced transmission of THz radiation through subwavelength holes," Phys. Rev. B, Vol. 68, 201306, 2003.
    doi:10.1103/PhysRevB.68.201306

    22. Kuttge, M., et al., "Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings," J. Appl. Phys., Vol. 101, 023707, 2007.
    doi:10.1063/1.2409895

    23. Rivas, J. G., et al., "Transmission of THz radiation through InSb gratings of subwavelength apertures," Opt. Exp., Vol. 13, No. 3, 847-859, 2005.
    doi:10.1364/OPEX.13.000847

    24. Rivas, J. G., et al., "Propagation of surface plasmon polaritons on semiconductor gratings," Phys. Rev. Lett., Vol. 93, No. 25, 256804, 2004.
    doi:10.1103/PhysRevLett.93.256804

    25. Kuttge, M., et al., "Analysis of the propagation of terahertz surface plasmon polaritons on semiconductor groove gratings," JPN. J. Appl. Phys., Vol. 101, 023707, 2007.

    26. Kushwaha, M. S., "Plasmons and magnetoplasmons in semiconductor heterostructures," Surf. Sci. Rep., Vol. 41, No. 1-8, 1-416, 2001.
    doi:10.1016/S0167-5729(00)00007-8

    27. Eroglu, A. and J. K. Lee, "Dyadic Green’s functions for an electrically gyrotropic medium," Progress In Electromagnetics Research, Vol. 58, 223-241, 2006.
    doi:10.2528/PIER05070203

    28. Elmzughi, F. G. and D. R. Tilley, "Surface and guided-wave polariton modes of magnetoplasma films in the Voigt geometry," J. Phys.-Condens. Mat., Vol. 6, No. 23, 4233-4246, 1994.
    doi:10.1088/0953-8984/6/23/003

    29. Sarid, D., "Enhanced surface-magnetoplasma interactions in a semiconductor," Phys. Rev. B, Vol. 29, No. 4, 2344-2346, 1984.
    doi:10.1103/PhysRevB.29.2344

    30. Kushwaha, M. S. and P. Halevi, "Magnetoplasmons in thin films in the Voigt configuration," Phys. Rev. B, Vol. 36, No. 11, 5960-5967, 1987.
    doi:10.1103/PhysRevB.36.5960

    31. Kushwaha, M. S. and P. Halevi, "Magnetoplasmons in thin films in the perpendicular configuration," Phys. Rev. B, Vol. 38, No. 17, 12428-12435, 1988.
    doi:10.1103/PhysRevB.38.12428

    32. Huang, H., et al., "Surface modes at the interfaces between isotropic media and uniaxial plasma," Progress In Electromagnetics Research, Vol. 76, 1-14, 2007.
    doi:10.2528/PIER07062005

    33. Eroglu, A. and J. K. Lee, "Wave propagation and dispersion characteristics for a nonreciprocal electrically gyrotropic medium," Progress In Electromagnetics Research, Vol. 62, 237-260, 2006.
    doi:10.2528/PIER06040901

    34. Kong, F. M., et al., "Propagation properties of the SPP modes in nanoscale narrow metallic gap, channel, and hole geometries," Progress In Electromagnetics Research, Vol. 76, 449-466, 2007.
    doi:10.2528/PIER07070203

    35. Rozzi, T. and M. Mongiardo, Open Electromagnetic Waveguides, Institution of Electrical Engineers, London, 1997.

    36. Marcatili, E. A. J., "Dielectric rectangular waveguide and directional coupler for integrated optics," The Bell System Technical Journal, Vol. 48, No. 7, 2071-2102, 1969.