Vol. 82

Latest Volume
All Volumes
All Issues
2008-03-30

Efficient Electrically Small Prolate Spheroidal Antennas Coated with a Shell of Double-Negative Metamaterials

By Ming Da Huang and Soon Yim Tan
Progress In Electromagnetics Research, Vol. 82, 241-255, 2008
doi:10.2528/PIER08031604

Abstract

An efficient, electrically small prolate spheroidal antenna coated with confocal double-negative (DNG) metamaterials (MTMs) shell is presented. The radiation power of this antenna-DNG shell system excited by a delta voltage across an infinitesimally narrow gap around the antenna center is obtained using the method of separation of the spheroidal scalar wave functions. Our results show that this electrically small dipole-DNG shell system has very high radiation efficiency comparing with the normal electrically small antenna due to the inductive effect of the MTMs shell that cancel with the capacitive effect of the electrically small antenna. It is found that the spheroidal shell can achieve more compact structure and higher radiated power ratio than the corresponding spherical shell. This dipole-DNG shell systems with different sizes are analyzed and discussed.

Citation


Ming Da Huang and Soon Yim Tan, "Efficient Electrically Small Prolate Spheroidal Antennas Coated with a Shell of Double-Negative Metamaterials," Progress In Electromagnetics Research, Vol. 82, 241-255, 2008.
doi:10.2528/PIER08031604
http://test.jpier.org/PIER/pier.php?paper=08031604

References


    1. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, New York, 2005.

    2. Chu, L. J., "Physical limitations of omnidirectional antennas," J. Appl. Phys., Vol. 19, No. 12, 1163-1175, 1948.
    doi:10.1063/1.1715038

    3. Hansen, R. C., "Fundamental limitations in antennas," Proc. IEEE, Vol. 69, No. 2, 170-181, 1981.
    doi:10.1109/PROC.1981.11950

    4. McLean, J. S., "A re-examination of the fundamental limits on the radiation Q of electrically small antennas," IEEE Trans. Antennas Propag., Vol. 44, No. 5, 672-676, 1996.
    doi:10.1109/MAP.2004.1396731

    5. Best, S. R., "A discussion on the properties of electrically small self-resonant wire antennas," IEEE Aantennas Propag. Mag., Vol. 46, No. 6, 9-22, 2004.
    doi:10.2528/PIERL07111907

    6. Kyi, Y. and J.-Y. Li, "Analysis of electrically small size conical antennas," Progress In Electromagnetics Research Letters, Vol. 1, 85-92, 2008.
    doi:10.1109/TAP.2005.844415

    7. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Antennas Propag., Vol. 53, No. 4, 1535-1556, 2005.
    doi:10.1109/TAP.2003.817561

    8. Ziolkowski, R. W. and A. D. Kipple, "Application of double negative materials to increase the power radiated by electrically small antennas," IEEE Trans. Antennas Propag., Vol. 51, No. 10, 2626-2640, 2003.
    doi:10.1109/TAP.2006.877179

    9. Ziolkowski, R. W. and A. Erentok, "Metamaterials-based efficient electrically small antennas," IEEE Trans. Antennas Propag., Vol. 54, No. 7, 2113-2130, 2006.
    doi:10.1163/156939306779322620

    10. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
    doi:10.1163/156939306779322585

    11. Chen, H., B.-I. Wu, and J. A. Kong, "Review of electromagnetic theory in left-handed materials," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2137-2151, 2006.
    doi:10.1163/156939307783152777

    12. Wang, M. Y., J. Xu, J. Wu, Y. Yan, and H.-L. Li, "FDTD study on scattering of metallic columu covered by double-negative metamaterial," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 14, 1905-1914, 2007.
    doi:10.1163/156939307783134452

    13. Manzanares-Martinez, J. and J. Gaspar-Armenta, "Direct integration of the constitutive relations for modeling dispersive metamaterials using the finite difference time-domain technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2297-2310, 2007.
    doi:10.1163/156939307783134425

    14. Yang, R., Y.-J. Xie, D. Li, J. Zhang, and J. Jiang, "Bandwidth enhancement of microstrip antennas with metamaterial bilayered substrates," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 15, 2321-2330, 2007.

    15. Hamid, A.-K. and F. R. Cooray, "Radiation characteristics of a spheroidal slot antenna coated with isorefractive materials," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 12, 1605-1619, 2007.
    doi:10.2528/PIERB07112803

    16. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
    doi:10.2528/PIERB07112906

    17. Valagiannopoulos, C. A., "Electromagnetic scattering from two eccentric metamaterial cylinders with frequency-dependent permittivities differing slightly each other," Progress In Electromagnetics Research B, Vol. 3, 23-34, 2008.
    doi:10.2528/PIERB07121107

    18. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by meta-materials and loaded with helical strips under oblique Incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.

    19. Cui, T. J., H.-F. Ma, R. P. Liu, B. Zhao, Q. Cheng, and J. Y. Chin, "A symmetrical circuit model describing all kinds of circuit metamaterials," Progress In Electromagnetics Research B, Vol. 5, 63-76, 2008.
    doi:10.2528/PIERL07111809

    20. Lagarkov, A. N., V. N. Kisel, and V. N. Semenenko, "Wide-angle absorption by the use of a metamaterial plate," Progress In Electromagnetics Research Letters, Vol. 1, 35-44, 2008.

    21. Flammer, C., Spheroidal Wave Functions, Stanford University Press, Stanford, 1957.

    22. Cooray, M. F. R. and I. R. Ciric, "Scattering of electromagnetic waves by a coated dielectric spheroid," Journal of Electromagnetic Waves and Applications, Vol. 6, 1491-1507, 1992.
    doi:10.1163/156939305775701895

    23. Huang, M. D. and S. Y. Tan, "Spheroidal phase mode processing for antenna arrays," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 11, 1431-1442, 2005.

    24. Schelkunoff, S. A., Advanced Antenna Theory, Wiley, New York, 1952.

    25. Do-Nhat, T. and R. H. MacPhie, "The input admittance of thin prolate spheroidal dipole antennas with finite gap widths," IEEE Trans. Antennas Propag., Vol. 43, No. 11, 1243-1252, 1995.
    doi:10.1109/TAP.2002.803950

    26. Li, L. W., M. S. Leong, T. S. Yeo, and Y. B. Gan, "“Electromagnetic radiation from a prolate spheroidal antenna enclosed in a confocal spheroidal radome," IEEE Trans. Antennas Propag., Vol. 50, No. 11, 1525-1533, 2002.
    doi:10.1109/TAP.2005.863109

    27. Capoglu, I. R. and G. S. Smith, "The input admittance of a prolate-spheroidal monopole antenna fed by a magnetic frill," IEEE Trans. Antennas Propag., Vol. 54, No. 2, 572-585, 2006.