Vol. 83

Latest Volume
All Volumes
All Issues
2008-05-08

Resistances and Inductances Extraction Using Surface Integral Equation with the Acceleration of Multilevel Green Function Interpolation Method

By Zhao Peng and Hao-Gang Wang
Progress In Electromagnetics Research, Vol. 83, 43-54, 2008
doi:10.2528/PIER08032001

Abstract

In this paper, we consider the resistances and inductances extraction from finite conducting metals. To remedy the weakness of volume integral equation, we extend the usage of a surface integral equation method from analyzing finite conducting rectangular wire strip to analyzing arbitrarily shaped geometry. Moreover the multilevel Green function method (MLGFIM) with a complexity of O(N) is employed to accelerate the matrix-vector multiplications in iterations. The numerical results shows the efficacy of the proposed method.

Citation


Zhao Peng and Hao-Gang Wang, "Resistances and Inductances Extraction Using Surface Integral Equation with the Acceleration of Multilevel Green Function Interpolation Method," Progress In Electromagnetics Research, Vol. 83, 43-54, 2008.
doi:10.2528/PIER08032001
http://test.jpier.org/PIER/pier.php?paper=08032001

References


    1. Venkov, G., M. W. McCall, and D. Censor, "The theory of low-frequency wave physics revisited," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 229-249, 2007.
    doi:10.1163/156939307779378763

    2. Tang, W., X. He, T. Pan, and Y. L. Chow, "Synthetic asymptote formulas of equivalent circuit components of square spiral inductors," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 2, 215-226, 2006.
    doi:10.1163/156939306775777206

    3. Zheng, Q. and H. Zeng, "Multipole theory analysis of 3D magnetostatic fields," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 3, 389-397, 2006.
    doi:10.1163/156939306775701768

    4. Babic, S. I. and C. Akyel, "New mutual inductance calculation of the magnetically coupled coils: Thin disk coil-thin wall solenoid," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 10, 1281-1290, 2006.
    doi:10.1163/156939306779276794

    5. Morsey, J. D., V. I. Okhmatovski, and A. C. Cangellaris, "Finite-thickness conductor models for full-wave analysis of interconnects with a fast integral equation method," IEEE Trans. Advaced-packaging, Vol. 27, No. 1, 24-33, 2004.
    doi:10.1109/TADVP.2004.825459

    6. Wang, H. G. and P. Zhao, "Combining multilevel Green's function interpolation method with volume loop bases for inductance extraction problems," Progress In Electromagnetics Research, Vol. 80, 225-239, 2008.
    doi:10.2528/PIER07102101

    7. Rokhlin, V., "Rapid solution of integral equation of classical potential theory," J. Comput. Phys., Vol. 60, 187-207, 1985.
    doi:10.1016/0021-9991(85)90002-6

    8. Lu, C. C. and W. C. Chew, "A multilevel algorithm for solving boundary integral equations of wave scattering," Microw. Opt. Tech. Lett., Vol. 7, 466-470, 1994.
    doi:10.1002/mop.4650071013

    9. Song, J. M., C. C. Lu, W. C. Chew, and S. W. Lee, "Fast illinois solver code (FISC)," IEEE Antennas Propag. Mag., Vol. 48, 27-34, 1998.
    doi:10.1109/74.706067

    10. Sarkar, T. K., E. Arvas, and S. M. Rao, "Application of FFT and the conjugate gradient method for the solution of electromagnetic radiation from electrically large and small conducting bodies," IEEE Trans. Antennas Propagat., Vol. 34, 635-640, 1986.
    doi:10.1109/TAP.1986.1143871

    11. Zhao, L., T. J. Cui, and W.-D. Li, "An efficient algorithm for EM scattering by electrically large dielectric objects using MR-QEB iterative scheme and CG-FFT method," Progress In Electromagnetics Research, Vol. 67, 341-355, 2007.
    doi:10.2528/PIER06121902

    12. Phillips, J. R. and J. K. White, "A precorrected-FFT method for electrostatic analysis of complicated 3-D structures," IEEE Trans. Comput.-aided Des. Integr. Circuits Syst., Vol. 16, 1059-1072, 1997.
    doi:10.1109/43.662670

    13. Chan, C. H., C.-M. Lin, L. Tsang, and Y. F. Leung, "A sparse matrix/canonical grid method for analyzing microstrip structures," IEICE Trans. Electron., Vol. E80-C, No. 11, 1354-1359, 1996.

    14. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, 1225-1251, 1996.
    doi:10.1029/96RS02504

    15. Wang, H. G., C. H. Chan, and L. Tsang, "A new multilevel Green's function interpolation method for large scale low frequency EM simulations," IEEE Trans. Comput.-aided Des. Integr. Circuits Syst., Vol. 24, No. 9, 1427-1443, 2005.
    doi:10.1109/TCAD.2005.850804

    16. Wang, H. G. and C. H. Chan, "The implementation of multilevel Green's function interpolation method for full-wave electromagnetic problems," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1348-1358, 2007.
    doi:10.1109/TAP.2007.895576

    17. Wang, H. G., C. H. Chan, L. Tsang, and K. F. Chan, "Mixture effective permittivity simulations using IMLMQRF method on preconditioned EFIE," Progress In Electromagnetics Research, Vol. 57, 285-310, 2006.
    doi:10.2528/PIER05072603

    18. Medgyesi-Mitschang, L. N. and J. M. Putnam, "Integral equation formulations for imperfectly conducting scatters," IEEE Trans. Antennas Propag., Vol. 33, No. 2, 206-214, 1985.
    doi:10.1109/TAP.1985.1143560

    19. Arbor, A., "A note on impedance boundary conditions," Can. J. Phys., Vol. 40, 663-666, 1962.

    20. Gilberg, R. F. and B. A. Forouzan, Data Structures: A Pseudocode Approach with C++, Thomson Asia Pte Ltd and PPTPH, 2002.

    21. Pozar, D. M., Microwave Engineering, 2nd Ed., Wiley, 1998.

    22. Qian, Z. G., W. C. Chew, and R. Suaya, "Generalized impedance boundary condition for conductor modeling in surface integral equation," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 11, 2354-2364, 2007.
    doi:10.1109/TMTT.2007.908678

    23. Zhao, J. S. and W. C. Chew, "Integral equation solution of Maxwell's equations from zero frequency to microwave frequencies," IEEE Trans. Antennas Propagat., Vol. 48, No. 10, 1635-1645, 2000.
    doi:10.1109/8.899680

    24. Cui, T. J. and W. C. Chew, "Accurate analysis of wire structures from very-low frequency to microwave frequency," IEEE Trans. Antennas Propagat., Vol. 50, No. 3, 301-307, 2002.
    doi:10.1109/8.999620

    25. Li, M.-K. and W. C. Chew, "Applying divergence-free condition in solving the volume integral equation," Progress In Electromagnetics Research, Vol. 57, 311-333, 2006.
    doi:10.2528/PIER05061303

    26. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, 1982.
    doi:10.1109/TAP.1982.1142818

    27. Hussein, K. F. A., "Fast computational algorithm for EFIE applied to arbitrarily-shaped conducting surfaces," Progress In Electromagnetics Research, Vol. 68, 339-357, 2007.
    doi:10.2528/PIER06122502

    28. Hanninen, I., M. Taskinen, and J. Sarvas, "Singularity subtraction integral formulae for surface integral equations with RWG, ROOFTOP and hybrid basis functions," Progress In Electromagnetics Research, Vol. 63, 243-278, 2006.
    doi:10.2528/PIER06051901

    29. Kamon, M., M. J. Tsuk, and J. K. White, "FASTHENRY: A multipole accelerated 3-D inductance extraction program," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 9, 1750-1758, 1994.
    doi:10.1109/22.310584