In this paper we study the behavior of wave radiation of a horizontal electric dipole antenna with grounded metamaterial substrates formed by using coordinate transformation technology. From theoretical analysis and simulation results, we can find that such metamaterial substrates not only improve the directive emission but also enhance the radiation efficiency as the dipole antenna gets closer and closer to the metallic ground plane. We thus demonstrate that the transformation medium can offer a theoretical basis for designing a compact planar antenna with transformation media as substrates.
2. Fan, Z., S. Qiao, J. Huangfu, and L.-X. Ran, "A miniaturized printed dipole antenna with V-shaped ground for 2.45 GHz RFID readers," Progress In Electromagnetics Research, Vol. 71, 149-158, 2007.
doi:10.2528/PIER07022501
3. Fan, Z., S. Qiao, H.-F. Jiang Tao, and L.-X. Ran, "Signal descriptions and formulations for long range UHF RFID readers," Progress In Electromagnetics Research, Vol. 71, 109-127, 2007.
doi:10.2528/PIER07021501
4. Loo, C.-H., K. Elmahgoub, F. Yang, A. Z. Elsherbeni, D. Kajfez, A. A. Kishk, T. Elsherbeni, L. Ukkonen, L. Sydanheimo, M. Kivikoski, S. Merilampi, and P. Ruuskanen, "Chip impedance matching for UHF RFID tag antenna design," Progress In Electromagnetics Research, Vol. 81, 359-370, 2008.
doi:10.2528/PIER08011804
5. Devries, P. D., "The state of RFID for effective baggage tracking in the airline industry," Journal of Electromagnetic Waves and Applications, Vol. 6, No. 2, 151-164, 2008.
6. Yang, S. C., C. C. Chen, and R. E. Crandall, "A conceptual model of innovative applications of RFID," Journal of Electromagnetic Waves and Applications, Vol. 5, No. 5, 480-495, 2008.
7. Lee, K. J., D. Kim, M. Kim, M. Tanaka, and K. Matsugatani, "A 2.4 GHz dual-patch RFID tag antenna scattering analysis," Microwave and Optical Technology Letters, Vol. 48, No. 11, 2241-2244, 2006.
doi:10.1002/mop.21931
8. Kim, D.-Y., H.-G. Yoon, B.-J. Jang, and J.-G. Yook, "Interference analysis of UHF RFID systems," Progress In Electromagnetics Research B, Vol. 4, 115-126, 2008.
9. Kuo, S.-K., S.-L. Chen, and C.-T. Lin, "An accuate method for impedance measurement of RFID tag antenna," Progress In Electromagnetics Research, Vol. 83, 93-106, 2008.
10. Sievenpiper, D., L. Zhang, R. F. J. Broas, N. G. Alexpolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theoryand Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001
11. Poilasne, G., "Antennas on high impedance ground planes: On the importance of the antenna isolation," Progress In Electromagnetics Research, Vol. 41, 237-255, 2003.
12. Simovski, C. R. and A. A. Sochava, "High-impedance surfaces based on self-resonant grids.analytical modelling and numerical simulations," Progress In Electromagnetics Research, Vol. 43, 239-256, 2003.
doi:10.2528/PIER03042801
13. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of epsilon and mu," Soviet Physics Uspekhi., Vol. 10, No. 4, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699
14. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physics Review Letters, Vol. 76, No. 25, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773
15. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theoryand Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002
16. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, 2001.
doi:10.1126/science.1058847
17. Wongkasem, N., A. Akyurtlu, and K. A. Marx, "Group theory based design of isotropic negative refractive index metamaterials," Progress In Electromagnetics Research, Vol. 63, 295-310, 2006.
doi:10.2528/PIER06062103
18. Grzegorczyk, T. M. and J. A. Kong, "Review of left-handed metamaterials: Evolution from theoretical and numerical studies to potential applications," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 14, 2053-2064, 2006.
doi:10.1163/156939306779322620
19. Wu, B.-I., H. Chen, J. A. Kong, and T. M. Grzegorczyk, "Surface wave suppression in antenna systems using magnetic metamaterial," Journal of Applied Physics, Vol. 101, No. 11, 114913-1-4, 2007.
20. Valagiannopoulos, C. A., "Effect of cylindrical scatterer with arbitrary curvature on the features of a metamaterial slab antenna," Progress In Electromagnetics Research, Vol. 71, 59-83, 2007.
doi:10.2528/PIER07021103
21. Kong, F., B.-I. Wu, J. A. Kong, J. Huangfu, S. Xi, and H. Chen, "Planar focusing antenna design by using coordinate transformation technology," Applied Physics Letters, Vol. 91, No. 25, 253509-1-3, 2007.
doi:10.1063/1.2826283
22. Semichaevsky, A. and A. Akyurtlu, "Homogenization of metamaterial-loaded substrates and superstrates for antennas," Progress In Electromagnetics Research, Vol. 71, 129-147, 2007.
doi:10.2528/PIER07021001
23. Alu, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Physical Review B, Vol. 75, 155410-1-13, 2007.
24. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
doi:10.1126/science.1125907
25. Zolla, F., S. Guenneau, A. Nicolet, and J. B. Pendry, "Electromagnetic analysis of cylindrical invisibility cloaks and the mirage effect," Optics Letters, Vol. 32, No. 9, 1069-1071, 2007.
doi:10.1364/OL.32.001069
26. Kong, J. A., Electromagnetic Wave Theory, EMW, Cambridge, 2005.
27. Microwave Studio is a registered trademark of Computer, GmbH, Darmstadt, Germany.
28. Gu, Y. Y., W. X. Zhang, and Z. C. Ge, "Two improved Fabry-Perot resonator printed antennas using EBG superstrate and AMC substrate," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 6, 719-728, 2007.
doi:10.1163/156939307780749147