Vol. 87

Latest Volume
All Volumes
All Issues
2008-10-30

Properties of Approximate Bessel Beams at Millimeter Wavelengths Generated by Fractal Conical Lens

By Yan-Zhong Yu and Wen-Bin Dou
Progress In Electromagnetics Research, Vol. 87, 105-115, 2008
doi:10.2528/PIER08100606

Abstract

An axicon, which images a point source into a line along the optic axis, is used widely to generate an approximation to a Bessel beam. More recently many novel axicons, such as Fresnel axicons, Fractal axicons and fractal conical lenses (FCLs), have been proposed. Understanding the properties of Bessel beams generated by these axicons is very helpful to research their applications. However, in optical region, all of them are calculated approximately by the scalar theory. To accurately analyze FCLs when illuminated by a plane wave at millimeter wavelengths, the rigorous electromagnetic analysis method, which combines a two-dimension finite-difference time-domain (2-D FDTD) method and Stratton-Chu formulas, is adopted in our paper. By using this method, the properties of approximate Bessel beams generated by FCLs are analyzed and the conclusions are given.

Citation


Yan-Zhong Yu and Wen-Bin Dou, "Properties of Approximate Bessel Beams at Millimeter Wavelengths Generated by Fractal Conical Lens," Progress In Electromagnetics Research, Vol. 87, 105-115, 2008.
doi:10.2528/PIER08100606
http://test.jpier.org/PIER/pier.php?paper=08100606

References


    1. Durnin, J., "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A, Vol. 4, No. 4, 651-654, 1987.
    doi:10.1364/JOSAA.4.000651

    2. Durnin, J., J. J. Miceli, Jr., and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett., Vol. 58, No. 15, 1499-1501, 1987.
    doi:10.1103/PhysRevLett.58.1499

    3. Li, D., K. Imasaki, S. Miyamoto, S. Amano, and T. Mochizuki, "Conceptual design of Bessel beam cavity for free-electron laser," Int. J. Infrared Millim. Waves, Vol. 27, No. 4, 165-171, 2006.

    4. Monk, S., J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, "The generation of Bessel beams at millimetre-wave frequencies by use of an axicon," Opt. Commun., Vol. 170, 213-215, 1999.
    doi:10.1016/S0030-4018(99)00463-0

    5. Mahon, R. J., W. Lanigan, J. A. Murphy, N. Trappe, S. Withington, and W. Jellema, "Novel techniques for millimeter wave imaging systems operating at 100 GHz," Proc. SPIE Int. Soc. Opt. Eng., Vol. 5789, 93-100, 2005.

    6. Garces-Chavez, V., D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, "Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam," Nature, Vol. 419, No. 6903, 145-147, 2002.
    doi:10.1038/nature01007

    7. Salo, J., et al., "Millimeter-wave Bessel beams using computer holograms," Electron. Lett., Vol. 37, No. 13, 834-835, 2001.
    doi:10.1049/el:20010551

    8. Meltaus, J., et al., "Millimeter-wave beam shaping using holograms," IEEE Trans. Microwave Theor. Tech., Vol. 51, No. 4, 1274-1279, 2003.
    doi:10.1109/TMTT.2003.809679

    9. Yu, Y. Z. and W. B. Dou, "Generation of Bessel beams at mm- and sub mm-wavelengths by binary optical elements," Int. J. Infrared Millim. Waves, Vol. 29, No. 7, 693-703, 2008.
    doi:10.1007/s10762-008-9365-6

    10. Pu, J. X. and S. J. Nemoto, "Design and analysis of diffractive axicons for Gaussian beam illumination," Chin. J. Lasers B, Vol. 10, No. 3, 228-232, 2001.

    11. Jaroszewicz, Z., A. Burvall, and A. T. Friberg, "Axicon-the most important optical element," Opt. Photonics News (USA), Vol. 16, No. 4, 35-39, 2005.

    12. Golub, I., "Fresnel axicon," Opt. Lett., Vol. 31, No. 12, 1890-1892, 2006.
    doi:10.1364/OL.31.001890

    13. Monsoriu, J. A., C. J. Zapata-Rodriguez, and W. D. Furlan, "Fractal axicons," Opt. Commun., Vol. 263, No. 1, 1-5, 2006.
    doi:10.1016/j.optcom.2006.01.020

    14. Monsoriu, J. A., W. D. Furlan, P. Andres, and J. Lancis, "Fractal conical lenses," Opt. Express, Vol. 14, No. 20, 9077-9082, 2006.
    doi:10.1364/OE.14.009077

    15. Yin, H. P. and W. B. Dou, "Analysis of an extended hemispherical lens antenna at millimeter wavelengths," Journal of Electromagnetic Waves and Applications, Vol. 16, No. 9, 1209-1222, 2002.
    doi:10.1163/156939302X00723

    16. An, G. and W. B. Dou, "Analysis of a sphere lens quasi-optical monopulse antenna/feed structure," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 1, 83-93, 2005.
    doi:10.1163/1569393052955044

    17. Dou, W. B. and Z. L. Mei, "Electromagnetic analysis of symmetrical diffractive lens with small F-number and electrical large size," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 10, 1359-1374, 2005.
    doi:10.1163/156939305775525855

    18. Wang, Z. X. and W. B. Dou, "Design and analysis of several kinds of dielectric lens antennas," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 12, 1643-1653, 2006.
    doi:10.1163/156939306779292327

    19. Wang, Z. X. and W. B. Dou, "Design and analysis of thin diffractive/refractive lens antennas," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 15, 2239-2251, 2006.
    doi:10.1163/156939306779322558

    20. Mandelbrot, B. B., The Fractal Geometry of Nature, W. H. Freeman, New York, 1983.

    21. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell equations in isotropic media," IEEE Trans. Antennas Propag., Vol. 14, No. 3, 302-307, 1966.
    doi:10.1109/TAP.1966.1138693

    22. Zhang, X., J. Fang, K. K. Mei, and Y. W. Liu, "Calculations of the dispersive characteristics of microstrips by the time-domain finite difference method," IEEE Trans. Microwave Theor. Tech., Vol. 36, No. 2, 263-267, 1988.
    doi:10.1109/22.3514

    23. Sheen, D. M., S. M. Ali, M. D. Abouzahra, and J. A. Kong, "Application of the three-dimensional finite-difference time-domain method to the analysis of planar microstrip circuits," IEEE Trans. Microwave Theor. Tech., Vol. 38, No. 7, 849-857, 1990.
    doi:10.1109/22.55775

    24. Ji, F., et al., "FDTD analysis of Y-junction microstrip circulator with a ferrite sphere," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 11, 1631-1641, 2003.
    doi:10.1163/156939303772681505

    25. Golestani-Rad, L., J. Rashed-Mohassel, and M. M. Danaie, "Rigorous analysis of EM-wave penetration into a typical room using FDTD method: The transfer function concept," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 7, 913-926, 2006.
    doi:10.1163/156939306776149851

    26. Ali, M. and S. Sanyal, "FDTD analysis of dipole antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 69, 341-359, 2007.
    doi:10.2528/PIER06122801

    27. Afrooz, K., et al., "Time domain analysis of active transmission line using FDTD technique (application to microwave/mm-wave transistors)," Progress In Electromagnetics Research, Vol. 77, 309-328, 2007.
    doi:10.2528/PIER07081401

    28. Ali, M. and S. Sanyal, "A numerical investigation of finite ground planes and reflector effects on monopole antenna factor using FDTD technique," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 10, 1379-1392, 2007.
    doi:10.1163/156939307783239410

    29. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comput. Phys., Vol. 114, No. 2, 185-200, 1994.
    doi:10.1006/jcph.1994.1159

    30. Stratton, J. A., Electromagnetic Theory, McGraw-Hill, New York, 1941.