Vol. 92

Latest Volume
All Volumes
All Issues
2009-04-20

A Photon Modeling Method for the Characterization of Indoor Optical Wireless Communication

By Haeng-Seon Lee
Progress In Electromagnetics Research, Vol. 92, 121-136, 2009
doi:10.2528/PIER09030506

Abstract

In this paper, an analysis method for optical wave propagation based on photon model is presented for the characterization of optical wireless communication environment. In contrast to radio waves, optical waves have very short wavelengths, so that material properties become important and often cause diffuse reflections. Channel models including diffuse reflections and absorption effects due to material surface textures make conventional electromagnetic wave analysis methods based on ray tracing consume enormous time. To overcome these problems, an analysis method using photon model is presented that approximates light intensity by density of photons. The photon model also ensures that simulation time is within a predictable limit and the accuracy is proportional to the number of total photons used in the simulation.

Citation


Haeng-Seon Lee, "A Photon Modeling Method for the Characterization of Indoor Optical Wireless Communication," Progress In Electromagnetics Research, Vol. 92, 121-136, 2009.
doi:10.2528/PIER09030506
http://test.jpier.org/PIER/pier.php?paper=09030506

References


    1. Kahn, J. M. and J. R. Barry, "Wireless infrared communications," Proc. IEEE, Vol. 85, 265-298, 1997.
    doi:10.1109/5.554222

    2. Komine, T. and M. Nakagawa, "Fundamental analysis for visiblelight communication system using LED lights," IEEE Trans. on Consumer Electronics, Vol. 50, No. 1, 100-107, Feb. 2004.
    doi:10.1109/TCE.2004.1277847

    3. Barry, J. R., J. M. Kahn, W. J. Krause, E. A. Lee, and D. G. Messerschmitt, "Simulation of multipath impulse response for indoor wireless optical channels," IEEE Journal on Selected Areas in Communications, Vol. 11, No. 3, 367-379, Apr. 1993.
    doi:10.1109/49.219552

    4. Kahn, J. M., et al., "Non-directed infrared links for high-capacity wireless LANs," IEEE Personal communications, No. 2, 1994.

    5. Kahn, J. M., W. J. Krause, and J. B. Carruthers, "Experimental characterization of non-directed indoor infrared channels," IEEE Trans. on Communications, Vol. 43, No. 2, 1613-1623, Feb. 1995.
    doi:10.1109/26.380210

    6. Lopez-Hernandez, F. J., R. Perez-Jimenez, and A. Santamaria, "Modified Monte Carlo scheme for high efficiency simulation of the impulse response on diffuse IR wireless indoor channels," Electronics Letters, Vol. 34, No. 19, 1819-1820, Sept. 1998.
    doi:10.1049/el:19981173

    7. Lopez-Hernandez, F. J., R. Perez-Jimenez, and A. Santamaria, "Ray tracing algorithms for fast calculation of the channel impulse response on diffuse IR wireless indoor channels," Optical Engineering, Vol. 39, No. 10, 2775-2780, Oct. 2000.
    doi:10.1117/1.1287397

    8. Gonzalez, O., S. Rodrguez, R. Perez-Jimenez, B. R. Mendoza, and A. Ayala, "Error analysis of the simulated impulse response on indoor wireless optical channels using a Monte Carlo-based ray-tracing algorithm," IEEE Trans. on Communications, Vol. 53, No. 1, 199-204, Jan. 2005.
    doi:10.1109/TCOMM.2004.840625

    9. Cocheril, Y. and R. Vauzelle, "A new ray-tracing based wave propagation model including rough surfaces scattering," Progress In Electromagnetics Research, PIER 75, 357-381, 2007.

    10. Jensen, H. W., "Global illumination using photon maps," Eurographics, Vol. 7, 21-30, 1996.

    11. Zinke, A. and A. Weber, "Efficient ray based global illumination using photon maps," International workshop on Vision, Modeling, and Visualization, 113-120, 2006.

    12. Havran, V., J. Bittner, and H.-P. Seidel, "Ray maps for global illumination," Eurographics Symposium on Rendering, 43-54, 2005.

    13. Sadiku, M. N., Numerical Techniques in Electromagnetics, 538-541, CRC Press, 2001.

    14. Schlick, C., "An inexpensive BRDF model for physically-based rendering," Eurographics, Vol. 13, No. 3, 234-246, 1994.

    15. Didascalou, D., M. Dottling, T. Zwick, and W. Wiesbeck, "A novel ray optical approach to model wave propagation in curved tunnels," IEEE Int. Veh. Technol. Conf. (VTC'99-Fall), 2313-2317, Amsterdam, The Netherlands, Sept. 1999.

    16. Bang, J. K., B. C. Kim, S. H. Suk, K. S. Jin, and H. T. Kim, "Time consumption reduction of ray tracing for RCS prediction using efficient grid division and space division algorithms," J. of Electromagn. Waves and Appl., Vol. 21, No. 6, 829-840, 2007.
    doi:10.1163/156939307780749129

    17. Jin, K. S., T. I. Suh, S. H. Suk, B. C. Kim, and H. T. Kim, "Fast ray tracing using a space-division algorithm for RCS prediction," J. of Electromagn. Waves and Appl., Vol. 20, No. 1, 119-126, 2006.
    doi:10.1163/156939306775777341

    18. Tao, Y. B., H. Lin, and H. J. Bao, "kD-tree based fast ray tracing for RCS prediction," Progress In Electromagnetics Research, PIER 81, 329-341, 2008.

    19. Liang, C., Z. Liu, and H. Di, "Study on the blockage of electromagnetic rays analytically," Progress in Electromagnetics Research B, No. 1, 253-268, 2008.
    doi:10.2528/PIERB07102902

    20. Teh, C. H.v and H. T. Chuah, "An improved image-based propagation model for indoor and outdoor communication channels," J. of Electromagn. Waves and Appl., Vol. 17, No. 1, 31-50, 2003.
    doi:10.1163/156939303766975335

    21. Razavi, S. M. J. and M. Khalaj-Amirhosseini, "Optimization an anechoic chamber with ray-tracing and genetic algorithms," Progress In Electromagnetics Research B, Vol. 9, 53-68, 2008.
    doi:10.2528/PIERB08062902

    22. Liang, C., Z. Liu, and H. Di, "Study on the blockage of electromagnetic rays analytically," Progress In Electromagnetics Research B, Vol. 1, 253-268, 2008.
    doi:10.2528/PIERB07102902

    23. Wang, S., H. B. Lim, and E. P. Li, "An efficient ray-tracing method for analysis and design of electromagnetic shielded room systems," J. of Electromagn. Waves and Appl., Vol. 19, No. 15, 2059-2071, 2005.
    doi:10.1163/156939305775570503

    24. Chen, C. H., C. L. Liu, C. C. Chiu, and T. M. Hu, "Ultrawide band channel calculation by SBR/Image techniques for indoor communication," J. of Electromagn. Waves and Appl., Vol. 20, No. 1, 41-51, 2006.
    doi:10.1163/156939306775777387