Vol. 92

Latest Volume
All Volumes
All Issues
2009-05-08

Resistive Sensor for High Power Microwave Pulse Measurement of Te01 Mode in Circular Waveguide

By Zilvinas Kancleris, Gediminas Slekas, Vincas Tamosiunas, and Milda Tamosiuniene
Progress In Electromagnetics Research, Vol. 92, 267-280, 2009
doi:10.2528/PIER09041409

Abstract

A resistive sensor (RS) devoted for high power microwave pulse measurement in cylindrical waveguide is considered. The modeling results of the interaction of the TE01 (H01) wave with a semiconductor plate with contacts on sidewalls of the plate placed on a wall of the circular waveguide are presented. A finite-difference time-domain (FDTD) method was employed for the calculation of the electromagnetic field components, reflection coefficient from the semiconductor obstacle, and the average electric field in it. The features of the resonances have been used to engineer the frequency response of the RS. It has been found that such electrophysical parameters of the plate can serve as the prototype of the sensing element (SE) for the circular waveguide RS with flat frequency response.

Citation


Zilvinas Kancleris, Gediminas Slekas, Vincas Tamosiunas, and Milda Tamosiuniene, "Resistive Sensor for High Power Microwave Pulse Measurement of Te01 Mode in Circular Waveguide," Progress In Electromagnetics Research, Vol. 92, 267-280, 2009.
doi:10.2528/PIER09041409
http://test.jpier.org/PIER/pier.php?paper=09041409

References


    1. Dagys, M., Z. Kancleris, R. Simniskis, E. Schamiloglu, and F. J. Agee, "Resistive sensor: Device for high-power microwave pulse measurement," IEEE Antennas and Propagation Magazine, Vol. 43, No. 5, 64-79, 2001.
    doi:10.1109/74.979368

    2. Chatterjee, R., Elements of Microwave Engineering, John Wiley & Sons, New York, Chichester, Brisbane, Toronto, 1986.

    3. Tantawi, S. G., "A novel circular TE01-mode bend for ultra-high-power applications," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 12, 1679-1687, 2004.
    doi:10.1163/1569393042955144

    4. Read, M. E., M. Gilgenbach, R. F. Lucey, K. R. Chu, A. T. Drobot, and V. L. Granatstein, "Spatial and temporial coherence of a 35-GHz gyromonotron using the TE01 circular mode," IEEE Trans. Microwave Theory and Tech., Vol. 28, No. 8, 857-878, 1980.
    doi:10.1109/TMTT.1980.1130185

    5. Kane, S. Y., "Numerical solution of initial boundary value problems involving Maxwell's equation in isotropic media," IEEE Trans. Antennas Propagation, Vol. 14, No. 3, 302-307, 1966.
    doi:10.1109/TAP.1966.1138693

    6. Taflove, A., Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Norwood, MA, 1995.

    7. Chew, W. C., J. M. Jin, C. C. Lu, E.Michielssen, and J. M. Song, "Fast solution methods in electromagnetics," IEEE Trans. on Antennas and Propagation, Vol. 45, No. 3, 533-543v, 1997.
    doi:10.1109/8.558669

    8. Chew, W. C., "A 3D perfectly matched medium from modified Maxwell's equations with streched coordinates," Microwave and Optical Technology Letters, Vol. 7, No. 13, 599-604, 1994.
    doi:10.1002/mop.4650071304

    9. Kancleris, Z., V. Tamosiunas, and M. Tamosiuniene, "Computation of the averaged electric field in the semiconductor obstacle placed in the coaxial line," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 4, 447-460, 2006.
    doi:10.1163/156939306776117072

    10. Chen, Q. and V. Fusco, "Three dimensional cylindrical coordinate finite difference time domain analysis of curved slot line," 2nd Int. Conf. Computations in Electromag., 323-326, U.K., 1994.
    doi:10.1049/cp:19940082

    11. Chen, Y., R. Mittra, and P. Harms, "Finite-difference timedomain algorithm for solving Maxwell's equation in rotationally symmetric geometries," IEEE Trans. Microwave Theory Tech., Vol. 44, No. 6, 832-839, 1996.
    doi:10.1109/22.506441

    12. Dib, N., T. Weller, M. Scardeletti, and M. Imparato, "Analysis of cylindrical transmission lines with the finite-difference timedomain method," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 4, 509-512, 1999.
    doi:10.1109/22.754886

    13. Trakic, A., H.Wang, F. Liu, H. S. Lpez, and S. Crozier, "Analysis of transient eddy currents in MRI using a cylindrical FDTD method," IEEE Trans. Appl. Supercond., Vol. 16, No. 9, 1924, 2006.
    doi:10.1109/TASC.2006.874000

    14. Liu, F. and S. Crozier, "An FDTD model for calculation of gradient-induced eddy currents in MRI system," IEEE Trans. Appl. Supercond., Vol. 14, No. 9, 1983-1989, 2004.
    doi:10.1109/TASC.2004.830609

    15. Kancleris, Z., "Handling of singularity in finite-difference time-domain procedure for solving Maxwell's equations in cylindrical coordinate system," IEEE Trans. on Antennas and Propagation, Vol. 56, No. 2, 610-613, 2008.
    doi:10.1109/TAP.2007.915478

    16. Baskakov, S. I., "Basics of electrodynamics," Sov. Radio, Moscow, 1973(in Russian).

    17. Kancleris, Z., G. Slekas, V. Tamosiunas, R. Simniskis, P. Ragulis, and M. Tamosiuniene, "Semiconductor plate interacting with TE01 mode in circular waveguide," Lithuanian J. Phys., Vol. 49, No. 1, 35-43, 2009.
    doi:10.3952/lithjphys.49116