Vol. 106

Latest Volume
All Volumes
All Issues
2010-07-21

Multi-Wavelength Fiber Optical Parametric Oscillator Based on a Highly Nonlinear Fiber and a Sagnac Loop Filter

By Daru Chen and Bing Sun
Progress In Electromagnetics Research, Vol. 106, 163-176, 2010
doi:10.2528/PIER10061506

Abstract

A novel multi-wavelength fiber optical parametric oscillator (MW-FOPO) with a ring cavity structure is proposed. In the ring cavity of the MW-FOPO, a Sagnac loop filter which is formed by a 3-dB optical coupler, a polarization controller and a segment of polarization maintained fiber is used as the comb filter, and a segment of highly nonlinear fiber is used as the gain medium. Multi-wavelength lasing of the MW-FOPO with a wavelength spacing of about 0.8nm is achieved and its power stability at room temperature is demonstrated by measuring peak power fluctuation within 42 minutes for 5 lasing wavelengths. The output spectrum of the MW-FOPO covers a large wavelength region from 1500nm to 1610 nm. A comparison of the output spectra between the MW-FOPO and the multi-wavelength Erbium-doped fiber laser is also presented.

Citation


Daru Chen and Bing Sun, "Multi-Wavelength Fiber Optical Parametric Oscillator Based on a Highly Nonlinear Fiber and a Sagnac Loop Filter," Progress In Electromagnetics Research, Vol. 106, 163-176, 2010.
doi:10.2528/PIER10061506
http://test.jpier.org/PIER/pier.php?paper=10061506

References


    1. Littman, M. G. and H. J. Metcalf, "Spectrally narrow pulsed dye laser without beam expander," Appl. Opt., Vol. 17, 2224-2227 , 1978.
    doi:10.1364/AO.17.002224

    2. Tajima, T. and J. M. Dawson, "Laser electron accelerator," Phys. Rev. Lett., Vol. 43, 267-270, 1979.
    doi:10.1103/PhysRevLett.43.267

    3. Witteman, W. J., "The CO2 laser," Springer Series in Optical Sciences, Vol. 53, Springer-Verlag, Berlin and New York, 1987.

    4. Agrawal, G. P. and N. K. Dutta, Long Wavelength Semiconductor Lasers, Van Nostrand Reinhold Co. Inc., New York, NY, 1986.

    5. Numai, T., Fundamentals of Semiconductor Lasers, Springer, New York, 2004.

    6. Koechner, W., Solid-state Laser Engineering, Springer Science & Business Media, Inc., 2006.

    7. Arakawa, Y. and H. Sakaki, "Multidimensional quantum well laser and temperature dependence of its threshold current," Appl. Phys. Lett., Vol. 40, 939-941, 1982.
    doi:10.1063/1.92959

    8. Denk, W., J. H. Strickler, and W. W. Webb, "Two-photon laser scanning fuorescence microscopy," Science, Vol. 248, 73-76, 1990.
    doi:10.1126/science.2321027

    9. Meng, X. G., J. R. Qiu, M. Y. Peng, D. P. Chen, Q. Z. Zhao, X. W. Jiang, and C. S. Zhu, "Near infrared broadband emission of bismuth-doped aluminophosphate glass," Opt. Express, Vol. 13, 1628-1634, 2005.
    doi:10.1364/OPEX.13.001628

    10. Ball, G. A. and W. W. Morey, "Compression-tuned single-frequency Bragg grating fiber laser," Opt. Lett., Vol. 19, 1979-1981, 1994.
    doi:10.1364/OL.19.001979

    11. Limpert, J., T. Schreiber, S. Nolte, H. Zellmer, A. Tunnermann, R. Iliew, F. Lederer, J. Broeng, G. Vienne, A. Petersson, and C. Jakobsen, "High-power air-clad large-mode-area photonic crystal fiber laser," Opt. Express, Vol. 11, 818-923, 2003.
    doi:10.1364/OE.11.000818

    12. Jeong, Y., J. K. Sahu, D. N. Payne, and J. Nilsson, "Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power," Opt. Express, Vol. 12, 6088-6092, 2004.
    doi:10.1364/OPEX.12.006088

    13. Huber, R., M. Wojtkowski, and J. G. Fujimoto, "Fourier domain mode locking (FDML): A new laser operating region and applications for optical coherence tomography," Opt. Express, Vol. 14, 3225-3237, 2006.
    doi:10.1364/OE.14.003225

    14. Wang, M. J., Z. S. Wu, Y. L. Li, and G. Zhang, "High resolution range profile identifying simulation of laser radar based on pulse beam scattering characteristics of targets," Progress In Electromagnetics Research, Vol. 96, 193-204, 2009.
    doi:10.2528/PIER09041901

    15. Shwetanshumala, S. Jana and S. Konar, "Propagation of a mixture of modes of a laser beam in a medium with saturable nonlinearity," Journal of Electromagnetic Waves and Applications, Vol. 20, No. 1, 65-77, 2006.
    doi:10.1163/156939306775777422

    16. Fu, X., C. Cui, and S. C. Chan, "Optically injected semiconductor laser for photonic microwave frequency mixing in radio-over-fiber," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 849-860, 2010.
    doi:10.1163/156939310791285236

    17. Wei, H. Y. and Z. S. Wu, "Study on the effect of laser beam propagation on the slant path through atmospheric turbulence," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5/6, 787-802, 2008.
    doi:10.1163/156939308784159525

    18. Li, J., J. Wang, and F. Jing, "Improvement of coiling mode to suppress higher-order-modes by considering mode coupling for large-mode-area fiber laser," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8/9, 1113-1124, 2010.
    doi:10.1163/156939310791586070

    19. Maiman, T. H., "Stimulated optical radiation in ruby masers," Nature, Vol. 187, 439-440, 1960.

    20. Han, Y., T. V. A. Tran, S. Kim, and S. B. Lee, "Multiwave-length Raman-fiber-laser-based long-distance remote sensor for simultaneous measurement of strain and temperature," Opt. Lett., Vol. 30, 1282-1284, 2005.
    doi:10.1364/OL.30.001282

    21. Ou, H., H. Fu, D. Chen, and S. He, "A tunable and reconfigurable microwave photonic filter based on a Raman fiber laser," Opt. Commun., Vol. 178, No. 1, 48-51, 2007.
    doi:10.1016/j.optcom.2007.05.041

    22. Shen, G. F., X. M. Zhang, H. Chi, and X. F. Jin, "Microwave/millimeter-wave generation using multi-wavelength photonic crystal fiber Brillouin laser," Progress In Electromagnetics Research, Vol. 80, 307-320, 2008.
    doi:10.2528/PIER07112202

    23. Liu, S. C., Z. W. Yin, L. Zhang, X. F. Chen, L. Gao, and J. C. Cheng, "Dual-wavelength FBG laser sensor based on photonic generation of radio frequency demodulation technique," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 16, 2177-2185, 2009.
    doi:10.1163/156939309790109252

    24. Moon, D. S., U.-C. Paek, and Y. Chang, "Multi-wavelength lasing oscillations in an Erbium-doped fiber laser using few-mode fiber Bragg grating," Opt. Express, Vol. 12, 6147-6152, 2004.
    doi:10.1364/OPEX.12.006147

    25. Liu, X., X. Yang, F. Lu, J. Ng, and X. Zhou, "Stable and uniform dual-wavelength Erbium-doped fiber laser based on fiber Bragg gratings and photonic crystal fiber," Opt. Express, Vol. 13, 142-147, 2006.

    26. Han, Y.-G., T. V. A. Tran, and A. B. Lee, "Wavelength-spacing tunable multi-wavelength Erbium-doped fiber laser based on four-wave mixing of dispersion-shifted fiber," Opt. Lett., Vol. 31, 697-699, 2006.
    doi:10.1364/OL.31.000697

    27. Chen, D., "Stable multi-wavelength erbium-doped fiber laser based on a photonic crystal fiber Sagnac loop filter," Laser Phys. Lett., Vol. 4, 437-439, 2007.
    doi:10.1002/lapl.200710003

    28. Qin, S., D. Chen, Y. Tang, and S. He, "Stable and uniform multi-wavelength fiber laser based on hybrid Raman and Erbium-doped fiber gains," Opt. Express, Vol. 14, 10522-10527, 2006.
    doi:10.1364/OE.14.010522

    29. Yamishita, S. and T. Baba, "Spacing-tunable multiwavelength fiber laser," Electron. Lett., Vol. 37, 1015-1517, 2001.
    doi:10.1049/el:20010690

    30. De Matos, C. J. S., D. A. Chestnut, P. C. Reeves-Hall, F. Koch, and J. R. Taylor, "Multi-wavelength, continuous wave fibre Raman ring laser operating at 1.55 μm," Electron. Lett., Vol. 37, 825-826, 2001.
    doi:10.1049/el:20010574

    31. Han, Y.-G., C.-S. Kim, J. U. Kand, U.-C. Paek, and Y. Chung, "Multiwavelength Raman fiber-ring laser based on tunable cascaded logn-period fiber gratings," IEEE Photon. Technol. Lett., Vol. 15, 383-385, 2003.

    32. Dong, X. Y., P. Shum, N. Q. Ngo, and C. C. Chan, "Multiwavelength Raman fiber laser with a continuously-tunable spacing," Opt. Express, Vol. 14, 3288-3293, 2006.
    doi:10.1364/OE.14.003288

    33. Chen, D., S. Qin, L. Shen, H. Chi, and S. He, "An all-fiber multi-wavelength raman laser based on a PCF sagnac loop filter," Microw. and Opt. Techn. Lett., Vol. 48, 2416-2418, 2006.
    doi:10.1002/mop.21968

    34. Cowle, G. J. and D. Y. Stepanov, "Multiple wavelength generation with Brillouin/erbium fiber lasers," IEEE Photon. Technol. Lett., Vol. 8, 1465-1467, 1996.
    doi:10.1109/68.541551

    35. Bumki, M., P. Kim, and N. Park, "Flat amplitude equal spacing 798-channel Rayleigh-assisted Brillouin/Raman multiwavelength comb generation in dispersion compensating fiber," IEEE Photon. Technol. Lett., Vol. 13, 1352-1354, 2001.
    doi:10.1109/68.969905

    36. Ahmad, H., M. Z. Zulkifli, S. F. Norizan, A. A. Latif, and S. W. Harun, "Controllable wavelength channels for multiwavelength Brillouin Bismuth/Erbium based fiber laser," Progress In Electromagnetics Research Letters, Vol. 9, 9-18, 2009.
    doi:10.2528/PIERL09031905

    37. Qureshi, K. K., H. Y. Tam, W. H. Chung, and P. K. A. Wai, "Multiwavelength laser source using linear optical amplifier," IEEE Photon. Technol. Lett., Vol. 17, 1611-1613, 2005.
    doi:10.1109/LPT.2005.851912

    38. Lee, Y. W., J. Jung, and B. Lee, "Multiwavelength-switchable SOA-fiber ring laser based on polarization-maintaining fiber loop mirror and polarization beam splitter," IEEE Photon. Technol. Lett., Vol. 16, 54-56, 2004.
    doi:10.1109/LPT.2003.819414

    39. Liu, D., N. Q. Ngo, H. Liu, and D. Liu, "Stable multiwavelength fiber ring laser with equalized power spectrum based on a semiconductor optical amplifier," Opt. Commun., Vol. 282, 1598-1601, 2009.
    doi:10.1016/j.optcom.2008.12.045

    40. Zhang, Z., W. Jian, K. Xu, X. Hong, and J. Lin, "Tunable multiwavelength SOA fiber laser with ultra-narrow wavelength spacing based on nonlinear polarization rotation," Opt. Express, Vol. 17, 17200-17205, 2009.
    doi:10.1364/OE.17.017200

    41. Pan, S. L., C. Y. Lou, and Y. Z. Gao, "Multiwavelength Erbium-doped fiber laser based on inhomogeneous loss mechanism by use of a highly nonlinear fiber and a Fabry-Perot filter," Opt. Express, Vol. 14, 1113-1118, 2006.
    doi:10.1364/OE.14.001113

    42. Marhid, M. E., K. K.-Y. Wong, G. Kalogerakis, and L. G. Kazovsky, "Toward practical fiber optical parametric amplifiers and oscillators," Optics & Photonics News, 21-25, 2004.

    43. Ho, M., K. Uesaka, Y. Akasaka, and L. G. Kazovsky, "200-nm-bandwidth fiber optical amplifier combing parametric and Raman gain," J. Lightwave Technol., Vol. 19, 977-981, 2001.

    44. Wong, K. K.-Y., K. Shimizu, K. Uesaka, G. Kalogerakis, M. E. Marhic, and L. G. Kazovsky, "Continuous-wave fiber optical parametric amplifier with 60-dB gain using a novel two segment design," IEEE Photon. Technol. Lett., Vol. 15, 1707-1709, 2003.
    doi:10.1109/LPT.2003.819706

    45. Gao, M., C. Jiang, W. Hu, and J. Wang, "Optimized design of two-pump fiber optical parametric amplifier with two-section nonlinear fibers using genetic algorithm," Opt. Express, Vol. 12, 5603-5613, 2004.
    doi:10.1364/OPEX.12.005603

    46. Dahan, D. and G. Eisenstein, "Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: A route to all optical buffering," Opt. Express, Vol. 13, 6234-6249, 2005.
    doi:10.1364/OPEX.13.006234

    47. Torounidis, T., P. A. Andrekson, and B. Olsson, "Fiber-optical parametric amplifier with 70-dB gain," IEEE Photon. Technol. Lett., Vol. 18, 1194-1196, 2006.
    doi:10.1109/LPT.2006.874714

    48. Wong, K. K. Y., G. Lu, and L. Chen, "Polarization-interleaved WDM signals in a fiber optical parametric amplifier with orthogonal pumps," Opt. Express, Vol. 15, 56-61, 2007.
    doi:10.1364/OE.15.000056

    49. Singh, S. P., R. Gangwar, and N. Singh, "Nonlinear scattering effects in optical fibers," Progress In Electromagnetics Research, Vol. 74, 379-405, 2007.
    doi:10.2528/PIER07051102

    50. Andalib, A., A. Rostami, and N. Grangpayeh, "Analytical investigation and evaluation of pulse broadening factor propagating through nonlinear optical ¯bers (traditional and optimum dispersion compensated fibers)," Progress In Electromagnetics Research, Vol. 79, 119-136, 2008.
    doi:10.2528/PIER07092502

    51. Lasri, J., P. Devgan, R. Tang, J. E. Sharping, and P. Kumar, "A microstructure-fiber-based 10-GHz synchronized tunable optical parametric oscillator in the 1550-nm region," IEEE Photon. Technol. Lett., Vol. 15, 1058-1060, 2003.
    doi:10.1109/LPT.2003.815333

    52. De Matos, C. J. S., J. R. Taylor, and K. P. Hansen, "Continouswave, totally fiber integrated optical parametric oscillator using holey fiber," Opt. Lett., Vol. 29, 983-985, 2004.
    doi:10.1364/OL.29.000983

    53. Zhou, Y., K. K. Y. Cheung, S. Yang, P. C. Chui, and K. K. Y. Wong, "Widely tunable picosecond optical parametric oscillator using highly nonlinear fiber," Opt. Lett., Vol. 34, 989-992, 2009.
    doi:10.1364/OL.34.000989

    54. Sharping, J. E., J. R. Sanborn, M. A. Foster, D. Broaddus, and A. L. Gaeta, "Generation of sub-100-fs pulses from a microstructure-fiber-based optical parametric oscillator," Opt. Express, Vol. 16, 18050-18056, 2008.
    doi:10.1364/OE.16.018050

    55. Sharping, J. E., C. Pailo, C. Gu, L. Kiani, and J. R. Sanborn, "Microstructure fiber optical parametric oscillator with femtosecond output in the 1200 to 1350 nm wavelength range," Opt. Express, Vol. 18, 3911-3916, 2010.
    doi:10.1364/OE.18.003911

    56. Zhuang, W. Z., W. C. Huang, Y. P. Huang, K. W. Su, and Y. F. Chen, "Passively Q-switched photonic crystal fiber laser and intracavity optical parametric oscillator," Opt. Express, Vol. 18, 8969-8975, 2010.
    doi:10.1364/OE.18.008969

    57. Wong, G. K. L., S. G. Murdoch, R. Leonhardt, J. D. Harvey, and V. Marie, "High-conversion-efficiency widely-tunable all-fiber optical parametric oscillator," Opt. Express, Vol. 15, 2947-2952, 2007.
    doi:10.1364/OE.15.002947

    58. Xu, Y. Q., S. G. Murdoch, R. Leonhardt, and J. D. Harvey, "Widely tunable photonic crystal fiber Fabry-Perot optical parametric oscillator," Opt. Lett., Vol. 33, 1351-1353, 2008.
    doi:10.1364/OL.33.001351

    59. Xu, Y. Q., S. G. Murdoch, R. Leonhardt, and J. D. Harvey, "Raman-assisted continuous-wave tunable all-fiber optical parametric oscillator," J. Opt. Soc. Am. B, Vol. 26, 1351-1356, 2009.
    doi:10.1364/JOSAB.26.001351

    60. Yang, S., X. Xu, Y. Zhou, K. K. Y. Cheung, and K. K. Y. Wong, "Continuous-wave single-longitudinal-mode fiber-optical parametric oscillator with reduced pump threshold," IEEE Photon. Technol. Lett., Vol. 21, 1870-1872, 2009.
    doi:10.1109/LPT.2009.2035056

    61. Luo, Z., W. D. Zhong, Z. Cai, C. Ye, H. Xu, X. Dong, and L. Xia, "Multiwavelength fiber optical parametric oscillator," IEEE Photon. Technol. Lett., Vol. 21, 1609-1611, 2009.
    doi:10.1109/LPT.2009.2030778

    62. Kim, D. H. and J. U. Kang, "Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity," Opt. Express, Vol. 12, 4490-4495, 2004.
    doi:10.1364/OPEX.12.004490