Vol. 130

Latest Volume
All Volumes
All Issues
2012-09-03

Evaluation of Lightning Return Stroke Current Using Measured Electromagnetic Fields

By Mahdi Izadi, Mohd Zainal Abidin Ab Kadir, Chandima Gomes, and Vernon Cooray
Progress In Electromagnetics Research, Vol. 130, 581-600, 2012
doi:10.2528/PIER12060712

Abstract

The lightning return stroke current is an important parameter for considering the effect of lightning on power lines. In this study, a numerical method is proposed to evaluate the return stroke current based on measured electromagnetic fields at an observation point in the time domain. The proposed method considers all field components and the full wave shape of the current without the use of a special current model as a basic assumption compared to previous methods. Furthermore, the proposed algorithm is validated using measured fields obtained from a triggered lightning experiment. The results show a good agreement between the simulated field based on the evaluated currents from the proposed method and the corresponding measured field at a remote observation point. The proposed method can determine current wave shapes related to a greater number of lightning occurrences compared to the direct measurement of the current.

Citation


Mahdi Izadi, Mohd Zainal Abidin Ab Kadir, Chandima Gomes, and Vernon Cooray, "Evaluation of Lightning Return Stroke Current Using Measured Electromagnetic Fields," Progress In Electromagnetics Research, Vol. 130, 581-600, 2012.
doi:10.2528/PIER12060712
http://test.jpier.org/PIER/pier.php?paper=12060712

References


    1. Rakov, V., M. A. Uman, and K. J. Rambo, "A review of ten years of triggered-lightning experiments at Camp Blanding, Florida," Atmospheric Research, Vol. 76, 503-517, 2005.
    doi:10.1016/j.atmosres.2004.11.028

    2. Popov, M., S. He, and R. Thottappillil, "Reconstruction of lightning currents and return stroke model parameters using remote electromagnetic fields," Journal of Geophysical Research, Vol. 105, 24469-24481, 2000.
    doi:10.1029/2000JD900283

    3. Andreotti, A., D. Assante, S. Falco, and L. Verolino, "An improved procedure for the return stroke current identification," IEEE Transactions on Magnetics, Vol. 41, 1872-1875, 2005.
    doi:10.1109/TMAG.2005.846283

    4. Milewski, M. and A. Hussein, Lightning return-stroke transmission line model based on CN tower lightning data and derivative of Heidler function, Canadian Conference on Electrical and Computer Engineering (CCECE), 2008.

    5. Hussein, A., M. Milewski, W. Janischewskyj, F. Noor, and F. Jabbar, "Characteristics of lightning flashes striking the CN Tower below its tip ," Journal of Electrostatics, Vol. 65, 307-315, 2007.
    doi:10.1016/j.elstat.2006.09.011

    6. Kodali, V., V. Rakov, M. Uman, K. Rambo, G. Schnetzer, J. Schoene, and J. Jerauld, "Triggered-lightning properties inferred from measured currents and very close electric fields," Atmospheric Research, Vol. 76, 355-376, 2005.
    doi:10.1016/j.atmosres.2004.11.036

    7. Rachidi, F., J. Bermudez, M. Rubinstein, and V. Rakov, "On the estimation of lightning peak currents from measured fields using lightning location systems ," Journal of Electrostatics, Vol. 60, 121-129, 2004.
    doi:10.1016/j.elstat.2004.01.010

    8. Uman, M. A. and D. K. McLain, "Lightning return stroke current from magnetic and radiation field measurements," Journal of Geophysical Research, Vol. 75, 5143-5147, 1970.
    doi:10.1029/JC075i027p05143

    9. Uman, M. A., D. K. McLain, and E. Krider, "The electromagnetic radiation from a finite antenna," Amer. J. Phys., Vol. 43, 33-38, 1975.
    doi:10.1119/1.10027

    10. Shoory, A., F. Rachidi, M. Rubinstein, R. Moini, and S. H. Sadeghi, "Analytical expressions for zero-crossing times in lightning return-stroke engineering models," IEEE Transactions on Electromagnetic Compatibility, Vol. 51, 963-974, 2009.
    doi:10.1109/TEMC.2009.2029699

    11. Rachidi, F. and C. Nucci, "On the Master, Uman, Lin, Standler and the modified transmission line lightning return stroke current models ," Journal of Geophysical Research, Vol. 95, 20389-20393, 1990.
    doi:10.1029/JD095iD12p20389

    12. Thottappillil, R. and M. Uman, "Comparison of lightning return-stroke models," Journal of Geophysical Research, Vol. 98, 22903, 1993.
    doi:10.1029/93JD02185

    13. Andreotti, A., U. De Martinis, and L. Verolino, "An inverse procedure for the return stroke current identification," IEEE Transactions on Electromagnetic Compatibility, Vol. 43, 155-160, 2002.
    doi:10.1109/15.925535

    14. Andreotti, A., F. Delfino, P. Girdinio, and L. Verolino, "An identification procedure for lightning return strokes," Journal of Electrostatics, Vol. 51, 326-332, 2001.
    doi:10.1016/S0304-3886(01)00097-3

    15. Andreotti, A., F. Delfino, P. Girdinio, and L. Verolino, "A field-based inverse algorithm for the identification of different height lightning return strokes," The International Journal for Computation and Mathematics in Electrical and Electronic Engineering (COMPEL), Vol. 20, 724-731, 2001.
    doi:10.1108/03321640110393716

    16. Rakov, V., Characterization of lightning electromagnetic fields and their modeling, 14th Int. Zurich Symposium on Electromagnetic Compatibility, 3-16, Zurich, 2001.

    17. Bizjaev, A., V. Larionov, and E. Prokhorov, "Energetic characteristics of lightning channel," 20th Int. Conf. Lightning Protection, 1.1, Switzerland, 1990.

    18. Dubovoy, E., M. Mikhailov, A. Ogonkov, and V. Pryazhinsky, "Measurement and numerical modeling of radio sounding re°ection from a lightning channel," Journal of Geophysical Research, Vol. 100, 1497-1502, 1995.
    doi:10.1029/94JD00965

    19. Dubovoy, E., V. Pryazhinsky, and G. Chitanava, "Calculation of energy dissipation in lightning channel," Meteorologiya i Gidrologiya, Vol. 2, 4-45, 1991.

    20. Podgorski, A. S. and J. A. Landt, "Three dimensional time domain modelling of lightning," IEEE Transactions on Power Delivery, Vol. 2, 931-938, 1987.
    doi:10.1109/TPWRD.1987.4308198

    21. Moini, R., B. Kordi, G. Rafi, and V. Rakov, "A new lightning return stroke model based on antenna theory," Journal of Geophysical Research, Vol. 105, 29693-29702, 2000.
    doi:10.1029/2000JD900541

    22. Moini, R., S. Sadeghi, and B. Kordi, "An electromagnetic model of lightning return stroke channel using electric field integral equation in time domain," Engineering Analysis with Boundary Elements, Vol. 27, 305-314, 2003.
    doi:10.1016/S0955-7997(02)00118-2

    23. Gardner, R. L., Lightning Electromagnetics, Hemisphere Publishing, New York, 1990.

    24. Visacro, S. and A. De Conti, "A distributed-circuit return-stroke model allowing time and height parameter variation to match lightning electromagnetic field waveform signatures," Geophysical Research Letters, Vol. 32, 2005.

    25. Mattos, M. A. F. and C. Christopoulos, "A model of the lightning channel, including corona, and prediction of the generated electromagnetic fields," Journal of Physics D: Applied Physics, Vol. 23, 40, 1990.
    doi:10.1088/0022-3727/23/1/007

    26. Gomes, C. and V. Cooray, "Concepts of lightning return stroke models," IEEE Transactions on Electromagnetic Compatibility, Vol. 42, 82-96, 2000.
    doi:10.1109/15.831708

    27. Cooray, V., "On the concepts used in return stroke models applied in engineering practice," IEEE Transactions on Electromagnetic Compatibility, Vol. 45, 101-108, 2003.
    doi:10.1109/TEMC.2002.808041

    28. Cooray, V. and V. Rakov, "A current generation type return stroke model that predicts the return stroke velocity," Journal of Lightning Research, Vol. 1, 32-39, 2007.

    29. Cooray, V., The Lightning Flash, IET Press, 2003.

    30. Rakov, V. and M. Uman, "Review and evaluation of lightning return stroke models including some aspects of their application," IEEE Transactions on Electromagnetic Compatibility, Vol. 40, 403-426, 1998.
    doi:10.1109/15.736202

    31. Diendorfer, G. and M. Uman, "An improved return stroke model with specified channel-base current," Journal of Geophysical Research --- Atmospheres, Vol. 95, 13621-13644, 1990.
    doi:10.1029/JD095iD09p13621

    32. Izadi, M., M. Z. Ab Kadir, C. Gomes, and W. F. Ahmad, "Analytical expressions for electromagnetic fields associated with the inclined lightning channels in the time domain ," Electric Power Components and Systems, Vol. 40, 414-438, 2012.
    doi:10.1080/15325008.2011.639130

    33. Izadi, M., M. Z. Ab Kadir, C. Gomes, and W. F. Ahmad, "An analytical second-FDTD method for evaluation of electric and magnetic ¯elds at intermediate distances from lightning channel," Progress In Electromagnetic Research, Vol. 110, 329-352, 2010.
    doi:10.2528/PIER10080801

    34. Izadi, M., M. Z. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods ," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011.

    35. Izadi, M., M. Z. Ab Kadir, C. Gomes, and W. F. Ahmad, "Numerical expressions in time domain for electromagnetic fields due to lightning channels ," International Journal of Applied Electromagnetics and Mechanics, Vol. 37, 275-289, 2011.

    36. Kreyszig, E., Advanced Engineering Mathematics, Wiley-India, 2007.

    37. Sadiku, M. N. O., Numerical Technique in Electromagnetics, CRC Press, LLC, 2001.

    38. Lee, Y.-G., "Electric field discontinuity-considered effective-permittivities and integration-tensors for the three-dimensional finite-difference time-domain method ," Progress In Electromagnetics Research, Vol. 118, 335-354, 2011.
    doi:10.2528/PIER11060304

    39. Engelbrecht, A. P., Fundamentals of Computational Swarm Intelligence, 1st Ed., Wiley Chichester, UK, 2005.

    40. Clerc, M., Particle Swarm Optimization, Wiley-ISTE, 2006.

    41. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, 397-407, 2004.
    doi:10.1109/TAP.2004.823969

    42. Zaharis, Z. D. and T. V. Yioultsis, "A novel adaptive beamforming technique applied on linear antenna arrays using adaptive mutated boolean PSO," Progress In Electromagnetics Research, Vol. 117, 165-179, 2011.

    43. Zhang, Y., S. Wang, and L. Wu, "A novel method for magnetic resonance brain image classification based on adaptive chaotic PSO ," Progress In Electromagnetics Research, Vol. 109, 325-343, 2010.
    doi:10.2528/PIER10090105

    44. Zaharis, Z. D., K. A. Gotsis, and J. N. Sahalos, "Adaptive beamforming with low side lobe level using neural networks trained by mutated boolean PSO ," Progress In Electromagnetics Research, Vol. 127, 139-154, 2012.
    doi:10.2528/PIER12022806

    45. Li, Y., S. Sun, F. Yang, and L. J. Jiang, "Design of dual-band slotted patch hybrid couplers based on PSO algorithm," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 17-18, 2409-2419, 2011.
    doi:10.1163/156939311798806220

    46. Wang, D., H. Zhang, T. Xu, H. Wang, and G. Zhang, "Design and optimization of equal split broadband microstrip Wilkinson power divider using enhanced Particle Swarm Optimization algorithm," Progress In Electromagnetics Research, Vol. 118, 321-334, 2011.
    doi:10.2528/PIER11052303

    47. Wang, J., B. Yang, S. H. Wu, and J. S. Chen, "A novel binary particle swarm optimization with feedback for synthesizing thinned planar arrays," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 14-15, 1985-1998, 2011.
    doi:10.1163/156939311798071965