In this work, we show how to manipulate the electromagnetic wave at will by using an indefinite medium with extremely strong anisotropy. The negative element in the indefinite permittivity tensor goes to the negative infinity while the positive element is equal to 1, which stretches the hyperbolic equifrequency contour into a straight line type. The direction of the Poynting vector and the wave vector is aligned by the straight line type equifrequency contour along the orientation of the extremely negative permittivity, thus control the wave propagation. The other permittivity of 1 makes the indefinite medium matched with the air. Moreover, because of the hyperbolic equifrequency contour, evanescent wave can also transmit in the indefinite medium under the propagation mode, implying the possibility of controlling an evanescent wave by this special indefinite medium. Simulations are performed to demonstrate the controlling performance and a potential design to realize such a medium by metamaterial with multilayered metal/dielectric structure. This work may supply a shortcut for those former devices based on the Transformation optics.
2. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628
3. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
doi:10.1103/PhysRevE.74.036621
4. You, Y., G. W. Kattawar, P. W. Zhai, and P. Yang, "Invisibility cloaks for irregular particles using coordinate transformations," Opt. Express, Vol. 16, 6134-6145, 2008.
doi:10.1364/OE.16.006134
5. Jiang, W. X., T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, "Arbitrarily elliptical-cylindrical invisible cloaking," J. Phys. D: Appl. Phys., Vol. 41, 085504, 2008.
doi:10.1088/0022-3727/41/8/085504
6. Huangfu, J., S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, B. Wu, L. Ran, and J. A. Kong, "Application of coordinate transformation in bent waveguides," J. Appl. Phys., Vol. 104, 014502, 2008.
doi:10.1063/1.2949272
7. Vasic, B., G. Isic, P. Gajic, and K. Hingerl, "Coordinate transformation based design of confined metamaterial structures," Phys. Rev. B, Vol. 79, 085103, 2009.
doi:10.1103/PhysRevB.79.085103
8. Landy, N. I. and W. J. Padilla, "Guiding light with conformal transformations," Opt. Express, Vol. 17, 14872-14879, 2009.
doi:10.1364/OE.17.014872
9. Jiang, W. X., T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, "Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials," Phys. Rev. E,, Vol. 78, 066607, 2008.
doi:10.1103/PhysRevE.78.066607
10. Gallina, I., G. Castaldi., V. Galdi., A. Alù, and N. Engheta, "General class of metamaterial transformation slabs," Phys. Rev. B, Vol. 81, 125124, 2010.
doi:10.1103/PhysRevB.81.125124
11. Ye, D., S. Xi, H. Chen, J. Huangfu, and L.-X. Ran, "Achieving large effective aperture antenna with small volume based on coordinate transformation," Progress In Electromagnetics Research, Vol. 111, 407-418, 2011.
doi:10.2528/PIER10081303
12. Jian, W. X., J. Yao, and T. J. Cui, "Anisotropic metamaterial devices," Mater. Today, Vol. 12, 26-33, 2009.
doi:10.1016/S1369-7021(09)70314-1
13. Kwon, D. H. and D. H. Werner, "Transformation electromagnetics: An overview of the theory and applications," IEEE Antenn. Propag. M., Vol. 52, 24-46, 2010.
doi:10.1109/MAP.2010.5466396
14. Smith, D. R. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett., Vol. 90, 077405, 2003.
doi:10.1103/PhysRevLett.90.077405
15. Lindell, I. V., S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media-media with negative parameters, capable of supporting backward waves ," Microw. Opt. Technol. Lett., Vol. 31, 129-133, 2001.
doi:10.1002/mop.1378
16. Mackay, T. G., A. Lakhtakia, and R. A. Depine, "Uniaxial dielectric media with hyperbolic dispersion relations," Microwave Opt. Tech. Lett., Vol. 48, 363-367, 2006.
doi:10.1002/mop.21350
17. Liu, Y., G. Bartal, and X. Zhang, "All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region," Opt. Express, Vol. 16, 15439-15448, 2008.
doi:10.1364/OE.16.015439
18. Hoffman, A. J., L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater., Vol. 6, 946-950, 2007.
doi:10.1038/nmat2033
19. Yao, J., Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires," Science, Vol. 321, 930, 2008.
doi:10.1126/science.1157566
20. Lee, H., Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express, Vol. 15, 15886-15891, 2007.
doi:10.1364/OE.15.015886
21. Fang, A., T. Koschny, and C. M. Soukoulis, "Optical anisotropic metamaterials: Negative refraction and focusing," Phys. Rev. B, Vol. 79, 245127, 2009.
doi:10.1103/PhysRevB.79.245127
22. Jellison, Jr, G. E. and J. S. Baba, "Pseudodielectric functions of uniaxial materials in certain symmetry directions," J. Opt. Soc. Am. A, Vol. 23, 468-475, 2006.
doi:10.1364/JOSAA.23.000468
23. Jiang, W. X., J. Yao, and T. J. Cui, "Anisotropic metamaterial devices," Mater. Today, Vol. 12, 26-33, 2009.
doi:10.1016/S1369-7021(09)70314-1
24. Vasic, B., G. Isic, P. Gajic, and K. Hingerl, "Coordinate transformation based design of confined metamaterial structures," Phys. Rev. B, Vol. 79, 085103, 2009.
doi:10.1103/PhysRevB.79.085103
25. Landy, N. I. and W. J. Padilla, "Guiding light with conformal transformations," Opt. Express, Vol. 17, 14872-14879, 2009.
doi:10.1364/OE.17.014872
26. Kwon, D. H. and D. H. Werner, "Transformation electromagnetics: An overview of the theory and applications," IEEE Antenn. Propag. M., Vol. 52, 24-46, 2010.
doi:10.1109/MAP.2010.5466396
27. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
doi:10.1103/PhysRevE.74.036621
28. Cheng, X., H. Chen, X.-M. Zhang, B. Zhang, and B.-I. Wu, "Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system," Progress In Electromagnetics Research, Vol. 100, 285-298, 2010.
doi:10.2528/PIER09112002
29. Zhai, Y.-B. and T.-J. Cui, "Three-dimensional axisymmetric invisibility cloaks with arbitrary shapes in layered-medium background," Progress In Electromagnetics Research B, Vol. 27, 151-163, 2011.
doi:10.2528/PIERL11092905
30. Agarwal, K., X. Cheng, L. Hu, H. Liu, and B. I. Wu, "Polarization-invariant directional cloaking by transformation optics," Progress In Electromagnetics Research, Vol. 118, 415-423, 2011.
doi:10.2528/PIER11061801
31. Cojocaru, E., "Illusion devices with internal or external circular objects designed by the coordinate transformation method," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2309-2317, 2010.
doi:10.1163/156939310793699091