Vol. 130

Latest Volume
All Volumes
All Issues
2012-08-23

Controlling the Electromagnetic Field by Indefinite Media with Extremely Strong Anisotropy

By Jingbo Sun, Tieyu Sun, Bo Li, Helen Lai Wa Chan, Ji Zhou, and Yu Wang
Progress In Electromagnetics Research, Vol. 130, 513-524, 2012
doi:10.2528/PIER12071813

Abstract

In this work, we show how to manipulate the electromagnetic wave at will by using an indefinite medium with extremely strong anisotropy. The negative element in the indefinite permittivity tensor goes to the negative infinity while the positive element is equal to 1, which stretches the hyperbolic equifrequency contour into a straight line type. The direction of the Poynting vector and the wave vector is aligned by the straight line type equifrequency contour along the orientation of the extremely negative permittivity, thus control the wave propagation. The other permittivity of 1 makes the indefinite medium matched with the air. Moreover, because of the hyperbolic equifrequency contour, evanescent wave can also transmit in the indefinite medium under the propagation mode, implying the possibility of controlling an evanescent wave by this special indefinite medium. Simulations are performed to demonstrate the controlling performance and a potential design to realize such a medium by metamaterial with multilayered metal/dielectric structure. This work may supply a shortcut for those former devices based on the Transformation optics.

Citation


Jingbo Sun, Tieyu Sun, Bo Li, Helen Lai Wa Chan, Ji Zhou, and Yu Wang, "Controlling the Electromagnetic Field by Indefinite Media with Extremely Strong Anisotropy," Progress In Electromagnetics Research, Vol. 130, 513-524, 2012.
doi:10.2528/PIER12071813
http://test.jpier.org/PIER/pier.php?paper=12071813

References


    1. Pendry, Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
    doi:10.1126/science.1125907

    2. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
    doi:10.1126/science.1133628

    3. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
    doi:10.1103/PhysRevE.74.036621

    4. You, Y., G. W. Kattawar, P. W. Zhai, and P. Yang, "Invisibility cloaks for irregular particles using coordinate transformations," Opt. Express, Vol. 16, 6134-6145, 2008.
    doi:10.1364/OE.16.006134

    5. Jiang, W. X., T. J. Cui, G. X. Yu, X. Q. Lin, Q. Cheng, and J. Y. Chin, "Arbitrarily elliptical-cylindrical invisible cloaking," J. Phys. D: Appl. Phys., Vol. 41, 085504, 2008.
    doi:10.1088/0022-3727/41/8/085504

    6. Huangfu, J., S. Xi, F. Kong, J. Zhang, H. Chen, D. Wang, B. Wu, L. Ran, and J. A. Kong, "Application of coordinate transformation in bent waveguides," J. Appl. Phys., Vol. 104, 014502, 2008.
    doi:10.1063/1.2949272

    7. Vasic, B., G. Isic, P. Gajic, and K. Hingerl, "Coordinate transformation based design of confined metamaterial structures," Phys. Rev. B, Vol. 79, 085103, 2009.
    doi:10.1103/PhysRevB.79.085103

    8. Landy, N. I. and W. J. Padilla, "Guiding light with conformal transformations," Opt. Express, Vol. 17, 14872-14879, 2009.
    doi:10.1364/OE.17.014872

    9. Jiang, W. X., T. J. Cui, X. Y. Zhou, X. M. Yang, and Q. Cheng, "Arbitrary bending of electromagnetic waves using realizable inhomogeneous and anisotropic materials," Phys. Rev. E,, Vol. 78, 066607, 2008.
    doi:10.1103/PhysRevE.78.066607

    10. Gallina, I., G. Castaldi., V. Galdi., A. Alù, and N. Engheta, "General class of metamaterial transformation slabs," Phys. Rev. B, Vol. 81, 125124, 2010.
    doi:10.1103/PhysRevB.81.125124

    11. Ye, D., S. Xi, H. Chen, J. Huangfu, and L.-X. Ran, "Achieving large effective aperture antenna with small volume based on coordinate transformation," Progress In Electromagnetics Research, Vol. 111, 407-418, 2011.
    doi:10.2528/PIER10081303

    12. Jian, W. X., J. Yao, and T. J. Cui, "Anisotropic metamaterial devices," Mater. Today, Vol. 12, 26-33, 2009.
    doi:10.1016/S1369-7021(09)70314-1

    13. Kwon, D. H. and D. H. Werner, "Transformation electromagnetics: An overview of the theory and applications," IEEE Antenn. Propag. M., Vol. 52, 24-46, 2010.
    doi:10.1109/MAP.2010.5466396

    14. Smith, D. R. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Phys. Rev. Lett., Vol. 90, 077405, 2003.
    doi:10.1103/PhysRevLett.90.077405

    15. Lindell, I. V., S. A. Tretyakov, K. I. Nikoskinen, and S. Ilvonen, "BW media-media with negative parameters, capable of supporting backward waves ," Microw. Opt. Technol. Lett., Vol. 31, 129-133, 2001.
    doi:10.1002/mop.1378

    16. Mackay, T. G., A. Lakhtakia, and R. A. Depine, "Uniaxial dielectric media with hyperbolic dispersion relations," Microwave Opt. Tech. Lett., Vol. 48, 363-367, 2006.
    doi:10.1002/mop.21350

    17. Liu, Y., G. Bartal, and X. Zhang, "All-angle negative refraction and imaging in a bulk medium made of metallic nanowires in the visible region," Opt. Express, Vol. 16, 15439-15448, 2008.
    doi:10.1364/OE.16.015439

    18. Hoffman, A. J., L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nat. Mater., Vol. 6, 946-950, 2007.
    doi:10.1038/nmat2033

    19. Yao, J., Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires," Science, Vol. 321, 930, 2008.
    doi:10.1126/science.1157566

    20. Lee, H., Z. Liu, Y. Xiong, C. Sun, and X. Zhang, "Development of optical hyperlens for imaging below the diffraction limit," Opt. Express, Vol. 15, 15886-15891, 2007.
    doi:10.1364/OE.15.015886

    21. Fang, A., T. Koschny, and C. M. Soukoulis, "Optical anisotropic metamaterials: Negative refraction and focusing," Phys. Rev. B, Vol. 79, 245127, 2009.
    doi:10.1103/PhysRevB.79.245127

    22. Jellison, Jr, G. E. and J. S. Baba, "Pseudodielectric functions of uniaxial materials in certain symmetry directions," J. Opt. Soc. Am. A, Vol. 23, 468-475, 2006.
    doi:10.1364/JOSAA.23.000468

    23. Jiang, W. X., J. Yao, and T. J. Cui, "Anisotropic metamaterial devices," Mater. Today, Vol. 12, 26-33, 2009.
    doi:10.1016/S1369-7021(09)70314-1

    24. Vasic, B., G. Isic, P. Gajic, and K. Hingerl, "Coordinate transformation based design of confined metamaterial structures," Phys. Rev. B, Vol. 79, 085103, 2009.
    doi:10.1103/PhysRevB.79.085103

    25. Landy, N. I. and W. J. Padilla, "Guiding light with conformal transformations," Opt. Express, Vol. 17, 14872-14879, 2009.
    doi:10.1364/OE.17.014872

    26. Kwon, D. H. and D. H. Werner, "Transformation electromagnetics: An overview of the theory and applications," IEEE Antenn. Propag. M., Vol. 52, 24-46, 2010.
    doi:10.1109/MAP.2010.5466396

    27. Cummer, S. A., B.-I. Popa, D. Schurig, D. R. Smith, and J. B. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
    doi:10.1103/PhysRevE.74.036621

    28. Cheng, X., H. Chen, X.-M. Zhang, B. Zhang, and B.-I. Wu, "Cloaking a perfectly conducting sphere with rotationally uniaxial nihility media in monostatic radar system," Progress In Electromagnetics Research, Vol. 100, 285-298, 2010.
    doi:10.2528/PIER09112002

    29. Zhai, Y.-B. and T.-J. Cui, "Three-dimensional axisymmetric invisibility cloaks with arbitrary shapes in layered-medium background," Progress In Electromagnetics Research B, Vol. 27, 151-163, 2011.
    doi:10.2528/PIERL11092905

    30. Agarwal, K., X. Cheng, L. Hu, H. Liu, and B. I. Wu, "Polarization-invariant directional cloaking by transformation optics," Progress In Electromagnetics Research, Vol. 118, 415-423, 2011.
    doi:10.2528/PIER11061801

    31. Cojocaru, E., "Illusion devices with internal or external circular objects designed by the coordinate transformation method," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2309-2317, 2010.
    doi:10.1163/156939310793699091