Vol. 139

Latest Volume
All Volumes
All Issues
2013-04-29

A Novel Power Divider Integrated with SIW and DGS Technology

By Zhaosheng He, Jingye Cai, Zhenhai Shao, Xiang Li, and Yong Mao Huang
Progress In Electromagnetics Research, Vol. 139, 289-301, 2013
doi:10.2528/PIER13022005

Abstract

In this paper, a novel power divider integrated with substrate integrated waveguide (SIW) and defected ground structures (DGS) techniques is proposed to provide both power dividing and filtering functions. The SIW technique holds advantages of low profile, low-lost, mass-production, easy fabrication and fully integration with planar circuits. By integrating with defected ground structures (DGS) technique, the size and cost of system can be effectively reduced as the proposed power divider has a function of filtering which leads to reduction of one filter. In order to verify the design approach, the proposed power divider with equal power divisions at the center frequency of 8.625 GHz is fabricated and measured. The measured results demonstrate that the insertion loss is less than 1.2 dB and the input return loss less than 16 dB across the bandwidth of 1.4 GHz (FBW is 16%). Moreover, the imbalances of the amplitude and phase are less than 0.3 dB and 0.5 degree, respectively.

Citation


Zhaosheng He, Jingye Cai, Zhenhai Shao, Xiang Li, and Yong Mao Huang, "A Novel Power Divider Integrated with SIW and DGS Technology," Progress In Electromagnetics Research, Vol. 139, 289-301, 2013.
doi:10.2528/PIER13022005
http://test.jpier.org/PIER/pier.php?paper=13022005

References


    1. Wilkinson, E., "IEEE Trans. Microw. Theory Tech.," IEEE Trans. Microw. Theory Tech., Vol. 8, 116-118, Jan. 1960.
    doi:10.1109/TMTT.1960.1124668

    2. Deng, P.-H., J.-H. Guo, and W.-C. Kuo, "New Wilkinson power dividers based on compact stepped-impedance transmission lines and shunt open stubs," Progress In Electromagnetics Research, Vol. 123, 407-426, 2012.
    doi:10.2528/PIER11111612

    3. Ruiz-Cruz, J. A., J. R. Montejo-Garai, J. M. Rebollar Machain, and S. Sobrino, "Compact full Ku-band triplexer with improved E-plane power divider," Progress In Electromagnetics Research, Vol. 86, 39-51, 2008.
    doi:10.2528/PIER08082803

    4. Hosseini, F., M. Khalaj-Amir Hosseini, and M. Yazdani, "A miniaturized Wilkinson power divider using nonuniform transmission line," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 917-924, 2009.
    doi:10.1163/156939309788355243

    5. Oraizi, H. and M. S. Esfahlan, "Miniaturization of Wilkinson power dividers by using defected ground structures," Progress In Electromagnetics Research Letters, Vol. 4, 113-120, 2008.
    doi:10.2528/PIERL08060701

    6. Shamsinejad, S., M. Soleimani, and N. Komjani, "Novel miniaturized Wilkinson power divider for 3G mobile receivers," Progress In Electromagnetics Research Letters, Vol. 3, 9-16, 2008.
    doi:10.2528/PIERL08012603

    7. Zhang, H., X.-W. Shi, F. Wei, and L. Xu, "Compact wideband Gysel power divider with arbitrary power division based on patch type structure," Progress In Electromagnetics Research, Vol. 119, 395-406, 2011.
    doi:10.2528/PIER11071501

    8. Russo, I., L. Boccia, G. Amendola, and H. Schumacher, "Compact hybrid coaxial architecture for 3 GHz-10 GHz UWB quasi-optical power combiners," Progress In Electromagnetics Research, Vol. 122, 77-92, 2012.
    doi:10.2528/PIER11101704

    9. Wu, Y. and Y. Liu, "An unequal coupled-line Wilkinson power divider for arbitrary terminated impedances," Progress In Electromagnetics Research, Vol. 117, 181-194, 2011.

    10. Zhang, Z., Y.-C. Jiao, S. Tu, S.-M. Ning, and S.-F. Cao, "A miniaturized broadband 4 : 1 unequal Wilkinson power divider," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 4, 505-511, 2010.

    11. Wu, Y., Y. Liu, S. Li, and C. Yu, "Extremely unequal Wilkinson power divider with dual transmission lines," Electronics Letters, Vol. 46, No. 1, 90-91, 2010.
    doi:10.1049/el.2010.2714

    12. Kim, Y., "A 10 : 1 unequal Gysel power divider using a capacitive loaded transmission line," Progress In Electromagnetics Research Letters, Vol. 32, 1-10, 2012.

    13. El-Tager, A. M. E., A. M. El-Akhdar, and H. M. El-Henawy, "Analysis of coupled microstrip lines for quad-band equal power dividers/combiners," Progress In Electromagnetics Research B, Vol. 41, 187-211, 2012.

    14. Miao, C., B. Li, G. Yang, N. Yang, C. Hua, and W.Wu, "Design of unequal Wilkinson power divider for tri-band operation," Progress In Electromagnetics Research Letters, Vol. 28, 159-172, 2012.
    doi:10.2528/PIERL11090302

    15. Cassivi, Y., L. Perregrini, P. Arcioni, M. Bressan, K. Wu, and G. Conciauro, "Dispersion characteristics of substrate integrated rectangular waveguide," IEEE Microw. Wireless Compon. Lett., Vol. 12, No. 9, 333-335, Sep. 2002.
    doi:10.1109/LMWC.2002.803188

    16. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 66-73, Jan. 2006.

    17. Deslandes, D. and K. Wu, "Integrated microstrip and rectangular waveguide in planar form," IEEE Microw. Wireless Compon. Lett., Vol. 11, 68-70, Feb. 2001.
    doi:10.1109/7260.914305

    18. Germain, S., D. Deslandes, and K.Wu, "Development of substrate integrated waveguide power dividers," IEEE CCECE Canadian Conference on Electrical and Computer Engineering, Vol. 3, 1921-1924, Canada, 2003.

    19. Hirokawa, J., K. Sakurai, M. Ando, and N. Goto, "An analysis of a waveguide T-junction with an inductive post," IEEE Trans. Microw. Theory Tech., Vol. 39, No. 3, 563-566, Mar. 1991.
    doi:10.1109/22.75301

    20. Deslandes, D. and K. Wu, "Single-substrate integration technique of planar circuits and waveguide filters," IEEE Trans. Microw. Theory Tech., Vol. 51, No. 2, 593-596, Feb. 2003.
    doi:10.1109/TMTT.2002.807820

    21. Xu, F. and K. Wu, "Guided-wave and leakage characteristics of substrate integrated waveguide," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 1, 66-73, 2005.
    doi:10.1109/TMTT.2004.839303

    22. Shao, Z. H. and M. Fujise, "Bandpass filter design based on LTCC and DGS," Proc. Asia-Pacific Microwave Conf., Suzhou, China, 2005.

    23. Weng, L. H., Y.-C. Guo, X.-W. Shi, and X.-Q. Chen, "An overview on defected ground structure," Progress In Electromagnetics Research B, Vol. 7, 173-189, 2008.
    doi:10.2528/PIERB08031401

    24. Ahn, D., J.-S. Park, C.-S. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Trans. Microw. Theory Tech., Vol. 49, No. 1, 86-93, Jan. 2001.
    doi:10.1109/22.899965

    25. Abdel-Rahman, A., A. R. Ali, S. Amari, and A. S. Omar, "Compact bandpass filters using defected ground structure (DGS) coupled resonators," IEEE MTT-S International Microwave Symposium Digest, 12-17, Jun. 2005.

    26. Huang, Y., Z. Shao, and L. Liu, "A substrate integrated waveguide bandpass filter using novel defected ground structure shape," Progress In Electromagnetics Research, Vol. 135, 201-213, 2013.

    27. Li, Y. C., Q. Xue, and X. Y. Zhang, "Single- and dual-band power dividers integrated with bandpass filters," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 1, 69-76, Dec. 2006.

    28. Liu, B., "The application of image transition in HMSIW power splitter design," High Speed Intelligent Communication Forum (HSIC), 1-2, May 2012.

    29. Hui, J. N., W. J. Feng, and W. Q. Che, "Balun band pass filter based on multilayer substrate integrated waveguide power divider," Electronics Letters, Vol. 48, No. 10, 571-573, 2012.
    doi:10.1049/el.2012.0479

    30. Zou, X., C.-M. Tong, and D.-W. Yu, "Y-junction power divider based on substrate integrated waveguide," Electronics Letters, Vol. 47, No. 25, 1375-1376, 2011.
    doi:10.1049/el.2011.2953

    31. Deng, P.-H. and L.-C. Dai, "Unequal Wilkinson power dividers with favorable selectivity and high-isolation using coupled-line filter trans-formers," IEEE Trans. Microw. Theory Tech., Vol. 60, No. 6, 1520-1529, Jun. 2012.
    doi:10.1109/TMTT.2012.2189409