Vol. 139

Latest Volume
All Volumes
All Issues
2013-04-17

3D Printed Lattices with Spatially Variant Self-Collimation

By Raymond C. Rumpf, Javier Pazos, Cesar R. Garcia, Luis Ochoa, and Ryan Wicker
Progress In Electromagnetics Research, Vol. 139, 1-14, 2013
doi:10.2528/PIER13030507

Abstract

In this work, results are given for controlling waves arbitrarily inside a new type of spatially variant lattice. To demonstrate the concept, an unguided beam was made to flow around a 90° bend without diffracting or scattering. Control of the field was achieved by spatially varying the orientation of the unit cells throughout a self-collimating photonic crystal, but in a manner that almost completely eliminated deformations to the size and shape of the unit cells. The device was all-dielectric, monolithic, and made from an ordinary dielectric with low relative permittivity (εr = 2.45). It was manufactured by fused deposition modeling, a form of 3D printing, and its performance confirmed experimentally at around 15 GHz.

Citation


Raymond C. Rumpf, Javier Pazos, Cesar R. Garcia, Luis Ochoa, and Ryan Wicker, "3D Printed Lattices with Spatially Variant Self-Collimation," Progress In Electromagnetics Research, Vol. 139, 1-14, 2013.
doi:10.2528/PIER13030507
http://test.jpier.org/PIER/pier.php?paper=13030507

References


    1. Capolino, F., Theory and Phenomena of Metamaterials, 1st Edition, CRC Press, 2009.
    doi:10.1201/9781420054262

    2. Shelby, R., D. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, 77-79, 2001.
    doi:10.1126/science.1058847

    3. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, 788-792, 2004.
    doi:10.1126/science.1096796

    4. Smith, D. R. and N. Kroll, "Negative refractive index in left-handed materials," Physical Review Letters, Vol. 85, 2933-2936, 2000.
    doi:10.1103/PhysRevLett.85.2933

    5. Gralak, B., S. Enoch, and G. Tayeb, "Anomalous refractive properties of photonic crystals," JOSA A, Vol. 17, 1012-1020, 2000.
    doi:10.1364/JOSAA.17.001012

    6. Wu, L., M. Mazilu, and T. F. Krauss, "Beam steering in planar-photonic crystals: From superprism to supercollimator," Journal of Lightwave Technology, Vol. 21, 561, 2003.
    doi:10.1109/JLT.2003.808773

    7. Notomi, M., "Negative refraction in photonic crystals," Optical and Quantum Electronics, Vol. 34, 133-143, 2002.
    doi:10.1023/A:1013300825612

    8. Baba, T. and M. Nakamura, "Photonic crystal light deflection devices using the superprism effect," IEEE Journal of Quantum Electronics, Vol. 38, 909-914, 2002.
    doi:10.1109/JQE.2002.1017606

    9. Enoch, S., G. Tayeb, and B. Gralak, "The richness of the dispersion relation of electromagnetic bandgap materials," IEEE Transactions on Antennas and Propagation, Vol. 51, 2659-2666, 2003.
    doi:10.1109/TAP.2003.817549

    10. Baba, T., "Slow light in photonic crystals," Nature Photonics, Vol. 2, 465-473, 2008.
    doi:10.1038/nphoton.2008.146

    11. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals: Toward microscale lightwave circuits," Journal of Lightwave Technology, Vol. 17, 2032, 1999.
    doi:10.1109/50.802991

    12. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, Vol. 58, 2059-2062, 1987.
    doi:10.1103/PhysRevLett.58.2059

    13. Yablonovitch, E., "Photonic crystals," Journal of Modern Optics, Vol. 41, 173-194, 1994.
    doi:10.1080/09500349414550261

    14. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, 2486-2489, 1987.
    doi:10.1103/PhysRevLett.58.2486

    15. Noda, S., A. Chutinan, and M. Imada, "Trapping and emission of photons by a single defect in a photonic bandgap structure," Nature, Vol. 407, 608-610, 2000.
    doi:10.1038/35036532

    16. Grann, E. B., M. Moharam, and D. A. Pommet, "Artificial uniaxial and biaxial dielectrics with use of two-dimensional subwavelength binary gratings," JOSA A, Vol. 11, 2695-2703, 1994.
    doi:10.1364/JOSAA.11.002695

    17. Lindell, I., S. Tretyakov, K. Nikoskinen, and S. Ilvonen, "BW media - Media with negative parameters, capable of supporting backward waves," Microwave and Optical Technology Letters, Vol. 31, 129-133, 2001.
    doi:10.1002/mop.1378

    18. Smith, D. and D. Schurig, "Electromagnetic wave propagation in media with indefinite permittivity and permeability tensors," Physical Review Letters, Vol. 90, 77405, 2003.
    doi:10.1103/PhysRevLett.90.077405

    19. Smith, D. R., P. Rye, D. C. Vier, A. F. Starr, J. J. Mock, and T. Perram, "Design and measurement of anisotropic metamaterials that exhibit negative refraction," IEICE Transactions on Electronics, Vol. E87-C, 359-370, 2004.

    20. Smith, D. R., D. Schurig, J. J. Mock, P. Kolinko, and P. Rye, "Partial focusing of radiation by a slab of indefinite media," Applied Physics Letters, Vol. 84, 2244, 2004.
    doi:10.1063/1.1690471

    21. Wood, B., J. Pendry, and D. Tsai, "Directed subwavelength imaging using a layered metal-dielectric system," Physical Review B, Vol. 74, 115116, 2006.
    doi:10.1103/PhysRevB.74.115116

    22. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Physical Review Letters, Vol. 99, 63908, 2007.
    doi:10.1103/PhysRevLett.99.063908

    23. Hoffman, A. J., L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, "Negative refraction in semiconductor metamaterials," Nature Materials, Vol. 6, 946-950, 2007.
    doi:10.1038/nmat2033

    24. Elser, J. and V. A. Podolskiy, "Scattering-free plasmonic optics with anisotropic metamaterials," Physical Review Letters, Vol. 100, 66402, 2008.
    doi:10.1103/PhysRevLett.100.066402

    25. Yao, J., Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, "Optical negative refraction in bulk metamaterials of nanowires," Science, Vol. 321, 930-930, 2008.
    doi:10.1126/science.1157566

    26. Fang, A., T. Koschny, and C. M. Soukoulis, "Optical anisotropic metamaterials: Negative refraction and focusing," Physical Review B, Vol. 79, 245127, 2009.
    doi:10.1103/PhysRevB.79.245127

    27. Garcia, C. R., J. Correa, D. Espalin, J. H. Barton, R. C. Rumpf, R. Wicker, and V. Gonzalez, "3D printing of anisotropic metamaterials," Progress In Electromagnetics Research Letters, Vol. 34, 75-82, 2012.

    28. Ponizovskaya, E., M. Nieto-Vesperinas, and N. Garcia, "Losses for microwave transmission in metamaterials for producing left-handed materials: The strip wires," Applied Physics Letters, Vol. 81, 4470-4472, 2002.
    doi:10.1063/1.1527982

    29. Varadan, V. and L. Ji, "Accounting for power `loss' in metamaterials," Metamaterials 2008, Pamplona, Spain, 2008.

    30. Fang, A., T. Koschny, M. Wegener, and C. Soukoulis, "Self-consistent calculation of metamaterials with gain," Physical Review B, Vol. 79, 241104, 2009.
    doi:10.1103/PhysRevB.79.241104

    31. Varadan, V. V. and J. Liming, "Does a negative refractive index always result in negative refraction? - Effect of loss," IEEE MTT-S International Microwave Symposium Digest, MTT' 09, 61-64, 2009.

    32. Khurgin, J. B. and G. Sun, "Scaling of losses with size and wavelength in nanoplasmonics and metamaterials," Applied Physics Letters, Vol. 99, 211106, 2011.
    doi:10.1063/1.3664105

    33. De Damborenea, J., "Surface modification of metals by high power lasers," Surface and Coatings Technology, Vol. 100, 377-382, 1998.
    doi:10.1016/S0257-8972(97)00652-X

    34. Batanov, G., N. Berezhetskaya, I. Kossyi, A. Magunov, and V. Silakov, "Interaction of high-power microwave beams with metal-dielectric media," The European Physical Journal Applied Physics, Vol. 26, 11-16, 2004.
    doi:10.1051/epjap:2004016

    35. Petelin, M. and A. Fix, "Comparison of metals in their steadiness to pulse-periodic microwave heating fatigue," IEEE International Vacuum Electronics Conference, 163-164, 2009.

    36. Bilik, V. and J. Bezek, "High power limits of waveguide stub tuners," J. Microw. Power, Vol. 44, 178-186, 2010.

    37. Anzel, I., "High temperature oxidation of metals and alloys,", 325-336, Association of Metallurgical Engineers of Serbia, 2007.

    38. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Self-collimating phenomena in photonic crystals," Applied Physics Letters, Vol. 74, 1212, 1999.
    doi:10.1063/1.123502

    39. Witzens, J., M. Loncar, and A. Scherer, "Self-collimation in planar photonic crystals," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 8, 1246-1257, 2002.
    doi:10.1109/JSTQE.2002.806693

    40. Iliew, R., C. Etrich, U. Peschel, F. Lederer, M. Augustin, H. J. Fuchs, D. Schelle, E. B. Kley, S. Nolte, and A. Tunnermann, "Diffractionless propagation of light in a low-index photonic-crystal film," Applied Physics Letters, Vol. 85, 5854-5856, 2004.
    doi:10.1063/1.1830675

    41. Feng, S., Z.-Y. Li, Z.-F. Feng, K. Ren, B.-Y. Cheng, and D.-Z. Zhang, "Focusing properties of a rectangular-rod photonic-crystal slab," Journal of Applied Physics, Vol. 98, 063102, 2005.
    doi:10.1063/1.2058190

    42. Iliew, R., C. Etrich, and F. Lederer, "Self-collimation of light in three-dimensional photonic crystals," Optics Express, Vol. 13, 7076-7085, 2005.
    doi:10.1364/OPEX.13.007076

    43. Shin, J. and S. Fan, "Conditions for self-collimation in three-dimensional photonic crystals," Optics Letters, Vol. 30, 2397-2399, 2005.
    doi:10.1364/OL.30.002397

    44. Lu, Z., S. Shi, J. A. Murakowski, G. J. Schneider, C. A. Schuetz, and D. W. Prather, "Experimental demonstration of self-collimation inside a three-dimensional photonic crystal," Physical Review Letters, Vol. 96, 173902, 2006.
    doi:10.1103/PhysRevLett.96.173902

    45. Kwon, D. H. and D. H. Werner, "Transformation optical designs for wave collimators, flat lenses and right-angle bends," New Journal of Physics, Vol. 10, 115023, 2008.
    doi:10.1088/1367-2630/10/11/115023

    46. Mekis, A., J. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. Joannopoulos, "High transmission through sharp bends in photonic crystal waveguides," Physical Review Letters, Vol. 77, 3787-3790, 1996.
    doi:10.1103/PhysRevLett.77.3787

    47. Roberts, D., M. Rahm, J. Pendry, and D. Smith, "Transformation-optical design of sharp waveguide bends and corners," Applied Physics Letters, Vol. 93, 251111, 2008.
    doi:10.1063/1.3055604

    48. Gabrielli, L. H. and M. Lipson, "Integrated Luneburg lens via ultra-strong index gradient on silicon," Optics Express, Vol. 19, 20122-20127, 2011.
    doi:10.1364/OE.19.020122

    49. Spadoti, D. H., L. H. Gabrielli, C. B. Poitras, and M. Lipson, "Focusing light in a curved-space," Optics Express, Vol. 18, 3181-3186, 2010.
    doi:10.1364/OE.18.003181

    50. Vasic, B., G. Isic, R. Gajic, and K. Hingerl, "Controlling electromagnetic fields with graded photonic crystals in metamaterial regime," Optics Express, Vol. 18, 20321-20333, 2010.
    doi:10.1364/OE.18.020321

    51. Akmansoy, E., E. Centeno, K. Vynck, D. Cassagne, and J. M. Lourtioz, "Graded photonic crystals curve the flow of light: An experimental demonstration by the mirage effect," Applied Physics Letters, Vol. 92, 133501, 2008.
    doi:10.1063/1.2901684

    52. Cassan, E., K. V. Do, C. Caer, D. Marris-Morini, and L. Vivien, "Short-wavelength light propagation in graded photonic crystals," Journal of Lightwave Technology, Vol. 29, 1937-1943, 2011.
    doi:10.1109/JLT.2011.2151175

    53. Centeno, E. and D. Cassagne, "Graded photonic crystals," Optics Letters, Vol. 30, 2278-2280, 2005.
    doi:10.1364/OL.30.002278

    54. Do, K. V., X. Le Roux, D. Marris-Morini, L. Vivien, and E. Cassan, "Experimental demonstration of light bending at optical frequencies using a non-homogenizable graded photonic crystal," Optics Express, Vol. 20, 4776-4783, 2012.
    doi:10.1364/OE.20.004776

    55. Li, Y. Y., M. Y. Li, P. F. Gu, Z. R. Zheng, and X. Liu, "Graded wavelike two-dimensional photonic crystal made of thin films," Applied Optics, Vol. 47, C70-C74, 2008.
    doi:10.1364/AO.47.000C70

    56. Rumpf, R. C. and J. Pazos, "Synthesis of spatially variant lattices," Optics Express, Vol. 20, 15263-15274, 2012.
    doi:10.1364/OE.20.015263

    57. Hussein, M. I., "Reduced Bloch mode expansion for periodic media band structure calculations," Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, Vol. 465, 2825-2848, 2009.
    doi:10.1098/rspa.2008.0471

    58. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Optics Express, Vol. 8, 173-190, 2001.
    doi:10.1364/OE.8.000173

    59. Guo, S. and S. Albin, "Simple plane wave implementation for photonic crystal calculations," Optics Express, Vol. 11, 167-175, 2003.
    doi:10.1364/OE.11.000167

    60. Rumpf, R. C., "Simple implementation of arbitrarily shaped total-field/scattered-field regions in finite-difference frequency-domain," Progress In Electromagnetics Research, Vol. 36, 221-248, 2012.
    doi:10.2528/PIERB11092006

    61. Gibson, I., D. W. Rosen, and B. Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, 459, Springer, London, New York, 2010.

    62. Wohlers, T., "Wohlers report 2012: Additive manufacturing and 3D printing state of the industry,", Annual Worldwide Progress Report, Wohlers Associates, Fort Collins, 2012.

    63. Palmer, J., B. Jokiel, C. Nordquist, B. Kast, C. Atwood, E. Grant, F. Livingston, F. Medina, and R. Wicker, "Miniature RF components enabled by mesoscale rapid manufacturing,", 2005.

    64. Palmer, J., B. Jokiel, C. Nordquist, B. Kast, C. Atwood, E. Grant, F. Livingston, F. Medina, and R. Wicker, "Mesoscale RF relay enabled by integrated rapid manufacturing," Rapid Prototyping Journal, Vol. 12, 148-155, 2006.
    doi:10.1108/13552540610670726

    65. Choi, J. W., E. MacDonald, and R. Wicker, "Multi-material microstereolithography," The International Journal of Advanced Manufacturing Technology, Vol. 49, 543-551, 2010.
    doi:10.1007/s00170-009-2434-8

    66. Choi, J. W., H. C. Kim, and R. Wicker, "Multi-material stereolithography," Journal of Materials Processing Technology, Vol. 211, 318-328, 2011.
    doi:10.1016/j.jmatprotec.2010.10.003

    67. Choi, J. W., F. Medina, C. Kim, D. Espalin, D. Rodriguez, B. Stucker, and R. Wicker, "Development of a mobile fused deposition modeling system with enhanced manufacturing flexibility," Journal of Materials Processing Technology, Vol. 211, 424-432, 2011.
    doi:10.1016/j.jmatprotec.2010.10.019

    68. Lopes, A. J., E. MacDonald, and R. B. Wicker, "Integrating stereolithography and direct print technologies for 3D structural electronics fabrication," Rapid Prototyping Journal, Vol. 18, 129-143, 2012.
    doi:10.1108/13552541211212113

    69. Wicker, R. B. and E. W. MacDonald, "Multi-material, multi-technology stereolithography," Virtual and Physical Prototyping, Vol. 7, 181-194, 2012.
    doi:10.1080/17452759.2012.721119

    70. Botten, L., T. White, C. M. de Sterke, and R. McPhedran, "Wide-angle coupling into rod-type photonic crystals with ultralow reflectance," Physical Review E, Vol. 74, 026603, 2006.
    doi:10.1103/PhysRevE.74.026603

    71. Sigaj, W. and B. Gralak, "Semianalytical design of antireflection gratings for photonic crystals," Physical Review B, Vol. 85, 035114, 2012.
    doi:10.1103/PhysRevB.85.035114