We analyze the performance of finite-difference time-domain (FDTD) method implementations for 2D and 3D problems. Implementations in Fortran, C and C++ (with Blitz++ library) languages and performance tests on several hardware setups (AMD, Intel i5, Intel Xeon) are considered. The performance of implementations using traditional FDTD algorithm for the largest size of test problem is limited by the bandwidth of computer random-accessed memory (RAM). Our implementations are compared with a commercial simulation software package Lumerical FDTD Solutions and an open source project Meep.
2. Okamoto, T., H. Takenaka, T. Nakamura, and T. Aoki, "Large-scale simulation of seismic-wave propagation of the 2011 Tohoku-Oki M9 earthquake," Proc. of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, 349, Mar. 1-4, 2012.
3. Hallaj, I. M. and R. O. Cleveland, "FDTD simulation of finite-amplitude pressure and temperature fields for biomedical ultrasound," J. Acoust. Soc. Am., Vol. 105, No. 5, L7-L12, 1999.
doi:10.1121/1.426776
4. Kong, L.-Y., J. Wang, and W.-Y. Yin, "A novel dielectric conformal FDTD method for computing SAR distribution of the human body in a metallic cabin illuminated by an intentional electromagnetic pulse (IEMP)," Progress In Electromagnetics Research, Vol. 126, 355-373, 2012.
doi:10.2528/PIER11112702
5. Schneider, J. B., "Understanding the finite-difference time-domain method,", www.eecs.wsu.edu/~schneidj/ufdtd, 2012.
6. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, Artech House, Inc., 685 Canton Street Nordwood, MA 02062, 2005.
7. Wang, M.-Y., J. Xu, J.Wu, B.Wei, H.-L. Li, T. Xu, and D.-B. Ge, "FDTD study on wave propagation in layered structures with biaxial anisotropic metamaterials," Progress In Electromagnetics Research, Vol. 81, 253-265, 2008.
doi:10.2528/PIER07122602
8. Kung, F. and H. T. Chuah, "Stability of classical finite-difference time-domain (FDTD) formulation with nonlinear elements - A new perspective," Progress In Electromagnetics Research, Vol. 42, 49-89, 2003.
doi:10.2528/PIER03010901
10. Chun, K., H. Kim, H. Kim, and Y. Chung, "PLRC and ADE implementations of Drude-critical point dispersive model for the FDTD method," Progress In Electromagnetics Research, Vol. 135, 373-390, 2013.
10. Lee, K. H., I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD method based on Lorentz-Drude dispersive model on GPU for plasmonics applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.
11. , , , http://www.lumerical.com.
12. , , , http://www.remcom.com/xf7.
doi:10.1109/20.34321
13. , , , http://www.acceleware.com/fdtd-solvers.
doi:10.1002/jnm.1660080314
14. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, 687702, 2010.
15. , , , http://fdtd.kintechlab.com/ru/start.
16. , , , http://www.angorafdtd.org.
doi:10.2528/PIER11082512
17. Perlik, A. T., T. Opsahl, and A. Ta°ove, "Predicting scattering of electromagnetic fields using FDTD on a connection machine," IEEE Trans. on Magnetics, Vol. 2, No. 4, 2910-2912, 1989.
doi:10.2528/PIER10102707
18. Chew, K. C. and V. F. Fusco, "A parallel implementation of the finite difference time-domain algorithm," Int. J. Numer. Model. El., Vol. 8, 293-299, 1995.
19. Wang, J.-B., B.-H. Zhou, L.-H. Shi, C. Gao, and B. Chen, "A novel 3-D weakly conditionally stable FDTD algorithm," Progress In Electromagnetics Research, Vol. 130, 525-540, 2012.
20. Mao, Y., B. Chen, H.-Q. Liu, J.-L. Xia, and J.-Z. Tang, "A hybrid implicit-explicit spectral FDTD scheme for oblique incidence problems on periodic structures," Progress In Electromagnetics Research, Vol. 128, 153-170, 2012.
21. Kong, Y.-D. and Q.-X. Chu, "Reduction of numerical dispersion of the six-stages split-step unconditionally-stable FDTD method with controlling parameters," Progress In Electromagnetics Research, Vol. 122, 175-196, 2012.
22. Sirenko, K., V. Pazynin, Y. K. Sirenko, and H. Bagci, "An FFT-accelerated FDTD scheme with exact absorbing conditions for characterizing axially symmetric resonant structures," Progress In Electromagnetics Research, Vol. 111, 331-364, 2011.
doi:10.1109/ISPDC.2012.17
23. Izadi, M., M. Z. A. Ab Kadir, and C. Gomes, "Evaluation of electromagnetic fields associated with inclined lightning channel using second order FDTD-hybrid methods," Progress In Electromagnetics Research, Vol. 117, 209-236, 2011.
24. , , , http://onzafdtd.org.
25. , , , http://sourceforge.net/projects/blitz/.
26. , , , www.top500.org.
27. Stefanski, T. P., "Implementation of FDTD-compatible Green's function on heterogeneous CPU-GPU parallel processing system," Progress In Electromagnetics Research, Vol. 135, 297-316, 2013.
28. Dursun, H., K. Nomura, W. Wang, M. Kunaseth, L. Peng, R. Seymour, R. K. Kalia, A. Nakano, and P. Vashishta, "In-core optimization of high-order stencil computations," Proc. PDPTA, 533-538, 2009.
29. Veldhuizen, T. L., "Scientific computing: C++ versus Fortran," Dr. Dobb's Journal of Software Tools, Vol. 22, No. 11, 34, 36, 38, 91, Nov. 1997.
30. , , , http://zsmith.co/bandwidth.html.
31. Zumbusch, G., "Tuning a finite difference computation for parallel vector processors," 2012 11th International Symposium on Parallel and Distributed Computing, CPS, 63-70, IEEE Press, 2012.