Vol. 139

Latest Volume
All Volumes
All Issues
2013-05-13

Pmm-GA Method to Synthesize Quasi-Optical Frequency Selective Surface on Sio2 Substrate

By Bu Gang Xia, Jin Meng, De Hai Zhang, and Jin Sheng Zhang
Progress In Electromagnetics Research, Vol. 139, 599-610, 2013
doi:10.2528/PIER13032703

Abstract

A satellite-borne frequency selective surface (FSS) for atmospheric sensing application is presented. This brand new type of band-pass filter has an operating frequency at 183 GHz, which is a typical frequency on H2O absorption line. Comprising an ultra-thin gilding layer and a SiO2 substrate layer, this complex periodic component exhibits an extremely low insertion loss (< 0.22 dB) and high isolation (> 20 dB) between closely spaced frequency channels of 45° incident wave. Periodic Method of Moment (PMM) approach is applied to determine the initial geo-metrical parameters of FSS unit cell, and the optimization approach based on the Genetic Algorithm (GA) enables us to obtain the requisite spectral response and transmission characteristics for both TE and TM polarization. The experimental results show that the proposed PMM-GA technique is effective for analyzing space-borne FSS at millimeter wave range.

Citation


Bu Gang Xia, Jin Meng, De Hai Zhang, and Jin Sheng Zhang, "Pmm-GA Method to Synthesize Quasi-Optical Frequency Selective Surface on Sio2 Substrate," Progress In Electromagnetics Research, Vol. 139, 599-610, 2013.
doi:10.2528/PIER13032703
http://test.jpier.org/PIER/pier.php?paper=13032703

References


    1. Wu, T. K., Frequency Selective Surface and Grid Array, Wiley, New York, 1995.

    2. Munk, B. A., "Frequency Selective Surfaces: Theory and Design," Wiley, New York, 2000.

    3. Zhang, J.-C., Y.-Z. Yin, and J.-P. Ma, "Design of narrow band-pass frequency selective surfaces for millimeter wave applications," Progress In Electromagnetics Research, Vol. 96, 287-298, 2009.
    doi:10.2528/PIER09081702

    4. Nguyen, T. K., T. A. Ho, I. Park, and H. Han, "Full-wavelength dipole antenna on a GaAs membrane covered by a frequency selective surface for a terahertz photomixer," Progress In Electromagnetics Research, Vol. 131, 441-455, 2012.

    5. Wu, X., Z.-B. Pei, S.-B. Qu, Z. Xu, J.-Q. Zhang, H. Ma, and X.-H. Wang, "Design and experimental Verification of band-pass Frequency Selective Surface Based on metamaterial Effective Medium Theory," Journal of Infrared and Millimeter Waves, Vol. 30, No. 5, 469-474, 2011.
    doi:10.3724/SP.J.1010.2011.00469

    6. Zhu, X., W. Shao, J.-L. Li, and Y.-L. Dong, "Design and optimization of low RCS patch antennas based on a genetic algorithm," Progress In Electromagnetics Research, Vol. 122, 327-339, 2012.
    doi:10.2528/PIER11100703

    7. Jian, L., G. Xu, J. Song, H. Xue, D. Zhao, and J. Liang, "Optimum design for improving modulating-effect of coaxial magnetic gear using response surface methodology and genetic algorithm," Progress In Electromagnetics Research, Vol. 116, 297-312, 2011.

    8. Monacelli, B., J. B. Pryor, B. A. Munk, D. Kotter, and G. D. Boreman, "Infrared frequency selective surface based on circuit-analog square loop design," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 2, 745-752, 2005.
    doi:10.1109/TAP.2004.841290

    9. Weile, D. S. and E. Michielssen, "Genetic algorithm optimization applied to electromagnetics: A review," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 3, 343-353, 1997.
    doi:10.1109/8.558650

    10. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
    doi:10.2528/PIER11051305

    11. Biber, S., M. Bozzi, O. Gunther, L. Perregrini, and L. P. Schmidt, "Design and testing of frequency selective surfaces on thick silicon substrate operating at 600 GHz," IEEE Microwave Conference, Vol. 1, European, 2005.

    12. Ohira, M., H. Deguchi, M. Tsuji, and H. Shigesawa, "Multiband single-layer frequency selective surface designed by combination of genetic algorithm and geometry-refinement technique," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 11, 2925-2931, 2004.
    doi:10.1109/TAP.2004.835289

    13. Monorchio, A., G. Manara, U. Serra, G. Marola, and E. Pagana, "Design of waveguide filters by using genetically optimized frequency selective surfaces," IEEE Microwave and Wireless Components Letters, Vol. 15, No. 6, 407-409, 2005.
    doi:10.1109/LMWC.2005.850482

    14. Gingrich, M. A. and D. H. Werner, "Synthesis of low/zero index of refraction metamaterials from frequency selective surfaces using genetic algorithms," Electronics Letters, Vol. 41, No. 23, 1266-1267, 2005.
    doi:10.1049/el:20053004

    15. Djabery, R., S. Nikmehr, and S. Hosseinzadeh, "Grating effects on sidelobe suppression in MIM plasmonic filters," Progress In Electromagnetics Research, Vol. 135, 271-280, 2013.

    16. Brennan, P. V., A. Narayanan, and R. Benjamin, "Grating lobe control in randomised, sparsely populated MIMO radar arrays," IET Radar, Sonar & Navigation, Vol. 6, No. 7, 587-594, 2012.
    doi:10.1049/iet-rsn.2010.0347

    17. Manara, G., A. Monorchio, and R. Mittra, "Frequency selective surface design based on genetic algorithm," Electronics Letters, Vol. 35, No. 17, 1400-1401, 1999.
    doi:10.1049/el:19990991

    18. Min, K. I., S. H. Ha, S. W. Lee, and Y. H. Moon, "Transmission loss allocation algorithm using path-integral based on transaction strategy," IEEE Transactions on Power Systems, Vol. 25, No. 1, 195-205, 2010.
    doi:10.1109/TPWRS.2009.2030349

    19. Raynolds, J. E., B. A. Munk, J. B. Pryor, and R. J. Marhefka, "Ohmic loss in frequency-selective surfaces," Journal of Applied Physics, Vol. 93, No. 9, 5346-5358, 2003.
    doi:10.1063/1.1565189

    20. Su, J., X.-W. Xu, M. He, and K. Zhang, "Integral-equation analysis of frequency selective surfaces using Ewald transformation and lattice symmetry," Progress In Electromagnetics Research, Vol. 121, 249-269, 2011.
    doi:10.2528/PIER11081902