A compact multilayer substrate integrated waveguide (SIW) dual-mode filter with multiple transmission zeros for high-selectivity application is presented. By introducing mixed coupling between source and load, the proposed filter could have four transmission zeros which can be controlled flexibly. Owing to the multilayer structure, the proposed filter occupies similar area in comparison with conventional dual-cavity dual mode SIW filters, but exhibits better frequency selectivity. An experimental filter with a center frequency of 10 GHz is designed using low temperature co-fired ceramic (LTCC) technology to validate the proposed structure, and measured results agree well with simulated ones.
2. Chiou, Y.-C. and J.-T. Kuo, "Planar multiband bandpass filter with multimode stepped-impedance resonators," Progress In Electromagnetics Research, Vol. 114, 129-144, 2011.
3. Kuo, J.-T., T.-W. Lin, and S.-J. Chung, "New compact triple-mode resonator filter with embedded inductive and capacitive cross coupling," Progress In Electromagnetics Research, Vol. 135, 435-449, 2013.
4. Wong, S. W., K. Wang, Z. N. Chen, and Q. X. Chu, "Rotationally symmetric coupled-lines bandpass filter with two transmission zeros," Progress In Electromagnetics Research, Vol. 135, 641-656, 2013.
5. Gao, M.-J., L.-S. Wu, and J.-F. Mao, "Compact notched ultra-wideband bandpass filter with improved out-of-band performance using quasi electromagnetic bandgap structure," Progress In Electromagnetics Research, Vol. 125, 137-150, 2012.
doi:10.2528/PIER12011701
6. Lee, K., T.-H. Lee, Y.-S. Kim, and J. Lee, "New negative coupling structure for substrate-integrated cavity resonators and its application to design of an elliptic response filter," Progress In Electromagnetics Research, Vol. 137, 117-127, 2013.
7. Chen, C.-H., C.-S. Shih, T.-S. Horng, and S.-M. Wu, "Very miniature dual-band and dual-mode bandpass filter designs on an integrated passive device chip," Progress In Electromagnetics Research, Vol. 119, 461-476, 2011.
doi:10.2528/PIER11080105
8. Wei, C.-L., B.-F. Jia, Z.-J. Zhu, and M.-C. Tang, "Design of different selectivity dual-Mode filters with E-shaped resonator," Progress In Electromagnetics Research, Vol. 116, 517-532, 2011.
9. Xia, B. and J. Mao, "A dual mode filter with wideband suppression," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1470-1475, 2012.
doi:10.1080/09205071.2012.703032
10. Park, W.-Y. and S. Lim, "Bandwidth tunable and compact band-pass filter (BPF) using complementary split ring resonators (CSRRS) on substrate integrated waveguide (SIW)," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17-18, 2407-2417, 2010.
doi:10.1163/156939310793675727
11. Chen, X. P., K. Wu, and D. Drolet, "Substrate integrated waveguide filter with improved stopband performance for satellite ground terminal," IEEE Trans. Microw. Theory Tech., Vol. 57, No. 3, 674-683, 2009.
doi:10.1109/TMTT.2009.2013316
12. Jiang, W., W. Shen, L. Zhou, and W.-Y. Yin, "Miniaturized and high-selectivity substrate integrated waveguide (SIW) bandpass filter loaded by complementary split-ring resonators (CSRRs)," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 11-12, 1448-1459, 2012.
doi:10.1080/09205071.2012.702203
13. Chen, X. P. and K. Wu, "Substrate integrated waveguide cross-coupled filter with negative coupling structure," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 1, 142-149, 2008.
doi:10.1109/TMTT.2007.912222
14. Jedrzejewski, A., N. Leszczynska, L. Szydlowski, and M.Mrozowski, "Zero-pole approach to computer aided design of in-line SIW filters with transmission zeros," Progress In Electromagnetics Research, Vol. 131, 517-533, 2012.
15. Chen, Y. J., "Substrate integrated waveguide frequency-agile slot antenna and its multibeam application," Progress In Electromagnetics Research, Vol. 130, 153-168, 2012.
16. Shen, W., W.-Y. Yin, X.-W. Sun, and J.-F. Mao, "Compact coplanar waveguide-incorporated substrate integrated waveguide (SIW) filter," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 871-879, 2010.
doi:10.1163/156939310791285164
17. Zhang, Q.-L., W.-Y. Yin, S. He, and L.-S. Wu, "Evanescent-mode substrate integrated waveguide (SIW) filters implemented with complementary split ring resonators," Progress In Electromagnetics Research, Vol. 111, 419-432, 2011.
doi:10.2528/PIER10110307
18. Shen, W., W. Y. Yin, and X. W. Sun, "Miniaturized dual-Band substrate integrated waveguide filter with controllable," IEEE Microw. Wireless Compon. Lett., Vol. 21, No. 8, 418-420, 2011.
doi:10.1109/LMWC.2011.2158412
19. Zhang, Q. L., B. Z. Wang, W. Y. Yin, and L. S. Wu, "Design of a miniaturized dual-band double-folded substrate integrated waveguide bandpass filter with controllable bandwidths," Progress In Electromagnetics Research, Vol. 136, 211-223, 2013.
20. Huang, Y. M., Z. H. Shao, and L. F. Liu, "A substrate integrated waveguide bandpass ¯lter using novel defected ground structure shape," Progress In Electromagnetics Research, Vol. 135, 201-213, 2013.
21. Wu, L. S., X. L. Zhou, W. Y. Yin, L. Zhou, and J. F. Mao, "A substrate-integrated evanescent-mode waveguide filter with nonresonating node in low-temperature co-fired ceramic," IEEE Trans. Microw. Theory Tech., Vol. 58, No. 10, 2654-2662, 2010.
doi:10.1109/TMTT.2010.2065290
22. Xu, Z. Q., Y. Shi, B. C. Yang, P. Wang, and Z. Tian, "Compact second-order LTCC substrate integrated waveguide filter with two transmission zeros," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 5-6, 795-805, 2012.
doi:10.1080/09205071.2012.710808
23. Wu, L. S., X. L. Zhou, Q. F. Wei, and W. Y. Yin, "An extended doublet substrate integrated waveguide (SIW) bandpass filter with a complementary split ring resonator (CSRR)," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 12, 777-779, 2009.
doi:10.1109/LMWC.2009.2034034
24. Wu, L.-S., J.-F. Mao, W. Shen, and W.-Y. Yin, "Extended doublet bandpass filters implemented with microstrip resonator and full-/half-mode substrate integrated cavities," Progress In Electromagnetics Research, Vol. 101, 203-216, 2010.
25. Li, R. Q., X. H. Tang, and F. Xiao, "An novel substrate integrated waveguide square cavity dual-mode filter," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 17-18, 2523-2529, 2009.
26. Shen, W., X. W. Sun, W. Y. Yin, J. F. Mao, and Q. F. Wei, "A novel single-cavity dual mode substrate integrated waveguide filter with non-resonating node," IEEE Microw. Wireless Compon. Lett., Vol. 19, No. 6, 368-370, 2009.
doi:10.1109/LMWC.2009.2020017
27. Xu, Z. Q., Y. Shi, C. Y. Xu, and P. Wang, "A novel dual mode substrate integrated waveguide filter with mixed source-load coupling (MSLC)," Progress In Electromagnetics Research, Vol. 136, 595-606, 2013.
28. Qin, P.-Y., C.-H. Liang, B. Wu, and T. Su, "Novel dual-mode bandpass filter with transmission zeros using substrate integrated waveguide cavity," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 5-6, 723-730, 2008.
doi:10.1163/156939308784159417
29. Lee, J. H., S. Pinel, J. Laskar, and M. M. Tentzeris, "Design and development of advanced cavity-based dual-mode filters using low-temperature co-fired ceramic technology for V-band gigabit wireless systems," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 9, 1869-1878, 2007.
doi:10.1109/TMTT.2007.904328
30. Wei, Q. F., Z. F. Li, and H. G. Shen, "Dual-mode filters based on substrate integrated waveguide by multilayer LTCC technology," Microw. Opt. Tech. Lett., Vol. 50, No. 11, 2788-2790, 2008.
doi:10.1002/mop.23829
31. Ahn, K. and I. Yom, "A Ka-band multilayer LTCC 4-pole bandpass filter using dual-mode cavity resonators," 2008 IEEE MTT-S International Microwave Symposium Digest, 1235-1238, Jun. 2008.
32. Zhang, Z. G., Y. Fan, Y. J. Cheng, and Y. H. Zhang, "A compact multilayer dual-mode substrate integrated circular cavity (Sicc) filter for X-band application," Progress In Electromagnetics Research, Vol. 122, 453-465, 2012.
doi:10.2528/PIER11102904
33. Liao, C.-K., P.-L. Chi, and C.-Y. Chang, "Microstrip realization of generalized Chebyshev filters with box-like coupling schemes," IEEE Trans. Microw. Theory Tech., Vol. 55, No. 1, 147-153, 2007.
doi:10.1109/TMTT.2006.888580
34. Chu, Q. X. and H. Wang, "A compact open-loop filter with mixed electric and magnetic coupling," IEEE Trans. Microw. Theory Tech., Vol. 56, No. 2, 431-439, 2008.
doi:10.1109/TMTT.2007.914642
35. Shen, W., Wu, L. S., Sun, X. W., Yin, W. Y, and J. F. Mao, "Novel substrate integrated waveguide filters with cross coupling (MCC)," IEEE Microw. Wireless Comp. Lett., Vol. 19, No. 11, 701-703, 2009.
doi:10.1109/LMWC.2009.2032007
36. Amari, S. and U. Rosenberg, "New building blocks for modular design of elliptic and self-equalized filters," IEEE Trans. Microw. Theory Tech., Vol. 52, No. 2, 721-736, 2004.
doi:10.1109/TMTT.2003.821923
37. Zhang, Z. G., Y. Fan, Y. J. Cheng, and Y. H. Zhang, "A novel multilayer dual-mode substrate integrated waveguide complementary filter with circular and elliptic cavities (SICC and SIEC)," Progress In Electromagnetics Research, Vol. 127, 173-188, 2012.
doi:10.2528/PIER12020704