Vol. 147

Latest Volume
All Volumes
All Issues

Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films (Invited Paper)

By Sailing He, Fei Ding, Lei Mo, and Fanglin Bao
Progress In Electromagnetics Research, Vol. 147, 69-79, 2014


Here we realize a broadband absorber by using a hyperbolic metamaterial composed of alternating aluminum-alumina thin films based on superposition of multiple slow-wave modes. Our super absorber ensures broadband and polarization-insensitive light absorption over almost the entire solar spectrum, near-infrared and short-wavelength infrared regime (500-2500 nm) with a simulated absorption of over 90%. The designed structure is fabricated and the measured results are given. This absorber yields an average measured absorption of 85% in the spectrum ranging from 500 nm to 2300 nm. The proposed absorbers open an avenue towards realizing thermal emission and energy-harvesting materials.


Sailing He, Fei Ding, Lei Mo, and Fanglin Bao, "Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films (Invited Paper)," Progress In Electromagnetics Research, Vol. 147, 69-79, 2014.


    1. Watts, C. M., X. L. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., Vol. 24, OP98-OP120, 2012.

    2. Kraemer, D., et al., "High-performance °at-panel solar thermoelectric generators with high thermal concentration," Nat. Mater., Vol. 10, 532-538, 2011.

    3. Rephaeli, E. and S. H. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit," Opt. Express, Vol. 17, 15145-15159, 2009.

    4. Teperik, T. V., et al., "Omnidirectional absorption in nanostructured metal surfaces," Nat. Photon., Vol. 2, 299-301, 2008.

    5. Bonod, N., G. Tayeb, D. Maystre, S. Enoch, and E. Popov, "Total absorption of light by lamellar metallic strips," Opt. Express, Vol. 16, 15431-15438, 2008.

    6. Kravets, V. G., F. Schedin, and A. N. Grigorenko, "Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings," Phys. Rev. B, Vol. 78, 205405, 2008.

    7. Hibbins, A. P., et al., "Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure," Phys. Rev. B, Vol. 74, 073408, 2006.

    8. Le Perchec, J., P. Quemerais, A. Barbara, and T. Lopez-Rios, "Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light," Phys. Rev. Lett., Vol. 100, 066408, 2008.

    9. White, J. S., et al., "Extraordinary optical absorption through subwavelength slits," Opt. Lett., Vol. 34, 686-688, 2009.

    10. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "A perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.

    11. Tao, H., et al., "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, 7181-7188, 2008.

    12. Liu, X. L., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Phys. Rev. Lett., Vol. 104, 207403, 2010.

    13. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, 2342-2348, 2010.

    14. Ye, Y. Q., Y. Jin, and S. L. He, "Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime," J. Opt. Soc. Am. B, Vol. 27, 498-504, 2010.

    15. Liu, X. L., et al., "Taming the blackbody with infrared metamaterials as selective thermal emitters," Phys. Rev. Lett., Vol. 107, 045901, 2011.

    16. Cui, Y. X., et al., "A thin film broadband absorber based on multi-sized nanoantennas," Appl. Phys. Lett., Vol. 99, 253101, 2011.

    17. Huang, L., et al., "Experimental demonstration of terahertz metamaterial absorbers with a broad and °at high absorption band," Opt. Lett., Vol. 37, 154-156, 2012.

    18. Aydin, K., V. Ferry, R. M. Briggis, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nat. Commun., Vol. 2, 517, 2011.

    19. Kravets, V. G., S. Neubeck, and A. N. Grigorenko, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B, Vol. 81, 165401, 2010.

    20. Hedayati, M. K., et al., "Design of a perfect black absorber at visible frequencies using plasmonic metamaterials," Adv. Mater., Vol. 23, 5410-5414, 2011.

    21. Rephaeli, E. and S. H. Fan, "Tungsten black absorber for solar light with wide angular operation range," Appl. Phys. Lett., Vol. 92, 211107, 2008.

    22. S¿ndergaard, T., et al., "Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves," Nat. Commun., Vol. 3, 969, 2012.

    23. Cui, Y. X., et al., "Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab," Nano Lett., Vol. 12, 1443-1447, 2012.

    24. Ding, F., Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, "Ultra-broadband microwave metamaterial absorber," Appl. Phys. Lett., Vol. 100, 103506, 2012.

    25. Elser, J., R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Appl. Phys. Lett.,, Vol. 89, 261102, 2006.

    26. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, New York, 1998.

    27. Born, M. and E. Wolf, Principle of Optics, 6th Ed., Macmillan, New York, 1964.

    28. He, J. L. and S. L. He, "Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate," IEEE Microw. Wirel. Compon. Lett., Vol. 16, 96-98, 2006.

    29. He, S. L., Y. R. He, and Y. Jin, "Revealing the truth about `trapped rainbow' storage of light in metamaterials," Sci. Rep., Vol. 2, 583, 2012.