Here we realize a broadband absorber by using a hyperbolic metamaterial composed of alternating aluminum-alumina thin films based on superposition of multiple slow-wave modes. Our super absorber ensures broadband and polarization-insensitive light absorption over almost the entire solar spectrum, near-infrared and short-wavelength infrared regime (500-2500 nm) with a simulated absorption of over 90%. The designed structure is fabricated and the measured results are given. This absorber yields an average measured absorption of 85% in the spectrum ranging from 500 nm to 2300 nm. The proposed absorbers open an avenue towards realizing thermal emission and energy-harvesting materials.
2. Kraemer, D., et al., "High-performance °at-panel solar thermoelectric generators with high thermal concentration," Nat. Mater., Vol. 10, 532-538, 2011.
doi:10.1038/nmat3013
3. Rephaeli, E. and S. H. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit," Opt. Express, Vol. 17, 15145-15159, 2009.
doi:10.1364/OE.17.015145
4. Teperik, T. V., et al., "Omnidirectional absorption in nanostructured metal surfaces," Nat. Photon., Vol. 2, 299-301, 2008.
doi:10.1038/nphoton.2008.76
5. Bonod, N., G. Tayeb, D. Maystre, S. Enoch, and E. Popov, "Total absorption of light by lamellar metallic strips," Opt. Express, Vol. 16, 15431-15438, 2008.
doi:10.1364/OE.16.015431
6. Kravets, V. G., F. Schedin, and A. N. Grigorenko, "Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings," Phys. Rev. B, Vol. 78, 205405, 2008.
doi:10.1103/PhysRevB.78.205405
7. Hibbins, A. P., et al., "Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure," Phys. Rev. B, Vol. 74, 073408, 2006.
doi:10.1103/PhysRevB.74.073408
8. Le Perchec, J., P. Quemerais, A. Barbara, and T. Lopez-Rios, "Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light," Phys. Rev. Lett., Vol. 100, 066408, 2008.
doi:10.1103/PhysRevLett.100.066408
9. White, J. S., et al., "Extraordinary optical absorption through subwavelength slits," Opt. Lett., Vol. 34, 686-688, 2009.
doi:10.1364/OL.34.000686
10. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "A perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402
11. Tao, H., et al., "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, 7181-7188, 2008.
doi:10.1364/OE.16.007181
12. Liu, X. L., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Phys. Rev. Lett., Vol. 104, 207403, 2010.
doi:10.1103/PhysRevLett.104.207403
13. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, 2342-2348, 2010.
doi:10.1021/nl9041033
14. Ye, Y. Q., Y. Jin, and S. L. He, "Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime," J. Opt. Soc. Am. B, Vol. 27, 498-504, 2010.
doi:10.1364/JOSAB.27.000498
15. Liu, X. L., et al., "Taming the blackbody with infrared metamaterials as selective thermal emitters," Phys. Rev. Lett., Vol. 107, 045901, 2011.
doi:10.1103/PhysRevLett.107.045901
16. Cui, Y. X., et al., "A thin film broadband absorber based on multi-sized nanoantennas," Appl. Phys. Lett., Vol. 99, 253101, 2011.
doi:10.1063/1.3672002
17. Huang, L., et al., "Experimental demonstration of terahertz metamaterial absorbers with a broad and °at high absorption band," Opt. Lett., Vol. 37, 154-156, 2012.
doi:10.1364/OL.37.000154
18. Aydin, K., V. Ferry, R. M. Briggis, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nat. Commun., Vol. 2, 517, 2011.
doi:10.1038/ncomms1528
19. Kravets, V. G., S. Neubeck, and A. N. Grigorenko, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B, Vol. 81, 165401, 2010.
doi:10.1103/PhysRevB.81.165401
20. Hedayati, M. K., et al., "Design of a perfect black absorber at visible frequencies using plasmonic metamaterials," Adv. Mater., Vol. 23, 5410-5414, 2011.
doi:10.1002/adma.201102646
21. Rephaeli, E. and S. H. Fan, "Tungsten black absorber for solar light with wide angular operation range," Appl. Phys. Lett., Vol. 92, 211107, 2008.
doi:10.1063/1.2936997
22. S¿ndergaard, T., et al., "Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves," Nat. Commun., Vol. 3, 969, 2012.
doi:10.1038/ncomms1976
23. Cui, Y. X., et al., "Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab," Nano Lett., Vol. 12, 1443-1447, 2012.
doi:10.1021/nl204118h
24. Ding, F., Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, "Ultra-broadband microwave metamaterial absorber," Appl. Phys. Lett., Vol. 100, 103506, 2012.
doi:10.1063/1.3692178
25. Elser, J., R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Appl. Phys. Lett.,, Vol. 89, 261102, 2006.
doi:10.1063/1.2422893
26. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, New York, 1998.
27. Born, M. and E. Wolf, Principle of Optics, 6th Ed., Macmillan, New York, 1964.
28. He, J. L. and S. L. He, "Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate," IEEE Microw. Wirel. Compon. Lett., Vol. 16, 96-98, 2006.
doi:10.1109/LMWC.2005.863190
29. He, S. L., Y. R. He, and Y. Jin, "Revealing the truth about `trapped rainbow' storage of light in metamaterials," Sci. Rep., Vol. 2, 583, 2012.