Vol. 148

Latest Volume
All Volumes
All Issues

Circular Polarized Patch Antenna Generating Orbital Angular Momentum

By Mirko Barbuto, Fabrizio Trotta, Filiberto Bilotti, and Alessandro Toscano
Progress In Electromagnetics Research, Vol. 148, 23-30, 2014


The recent extension of the orbital angular momentum (OAM) concept from optical to microwave frequencies has led some researchers to explore how well established antenna techniques can be used to radiate a non-zero OAM electromagnetic field. In this frame, the aim of the present paper is to propose a new approach to generate a non-zero OAM field through a single patch antenna. Using the cavity model, we first analyze the radiated field by a standard circular patch and show that a circular polarized (CP) TMnm mode excited by using two coaxial cables generates an electromagnetic field with an OAM of order ±(n-1). Then, in order to obtain a simpler structure with a single feed, we design an elliptical patch antenna working on the right-handed (RH) CP TM21 mode. Using full-wave simulations and experiments on a fabricated prototype, we show that the proposed antenna effectively radiates an electromagnetic field with a first order OAM. Such results prove that properly designed patch antennas can be used as compact and low-cost generators of electromagnetic fields carrying OAM.


Mirko Barbuto, Fabrizio Trotta, Filiberto Bilotti, and Alessandro Toscano, "Circular Polarized Patch Antenna Generating Orbital Angular Momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.


    1. Padgett, M. and L. Allen, "Light with a twist in its tail," Contemp. Phys., Vol. 41, 275-285, 2000.

    2. Torres, J. P. and L. Torner, Twisted Photons: Applications of Light with Orbital Angular Momentum, Wiley-VCH, 2011.

    3. Yao, A. M. and M. J. Padgett, "Orbital angular momentum: Origins, behavior and applications," Adv. Opt. Photon., Vol. 3, 161-204, 2011.

    4. Jiang, Y. S., Y. T. He, and F. Li, "Electromagnetic orbital angular momentum in remote sensing," PIERS Proceedings, 1330-1337, Moscow, Russia, Aug. 18-21, 2009.

    5. Thidé, B., H. Then, J. SjÄoholm, K. Palmer, J. Bergman, T. D. Carozzi, Y. N. Istomin, N. H. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the low-frequency radio domain," Phys. Rev. Lett., Vol. 99, No. 8, 087701-1-087701-4, Aug. 2007.

    6. Mohammadi, S. M., L. K. S. Daldor®, J. E. S. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, "Orbital angular momentum in radio --- A system study," IEEE Trans. Antennas Propag., Vol. 58, 565-572, 2010.

    7. Tennant, A. and B. Allen, "Generation of OAM radio waves using circular time-switched array antenna," Electron. Lett., Vol. 48, 1365-1366, 2012.

    8. Tamburini, F., E. Mari, B. Thidé, C. Barbieri, and F. Romanato, "Experimental verification of photon angular momentum and vorticity with radio techniques," Appl. Phys. Lett., Vol. 99, 204102-1-204102-3, 2011.

    9. Tamburini, F., E. Mari, A. Sponselli, F. Romanato, B. Thidé, A. Bianchini, L. Palmieri, and C. G. Someda, "Encoding many channels in the same frequency through radio vorticity: First experimental test," New J. Phys., Vol. 14, 033001, 2012.

    10. Harris, M., C. A. Hill, and J. M. Vaughan, "Optical helices and spiral interference fringes," Optics Comm., Vol. 106, 161-166, 1994.

    11. Beijersbergen, M. W., R. P. C. Coerwinkel, M. Kristensen, and J. P.Woerdman, "Helical-wavefront laser beams produced with a spiral phaseplate," Optics. Comm., Vol. 112, 321-327, 1994.

    12. Edfos, O. and A. J. Johansson, "Is orbital angular momentum (OAM) based radio communication an unexploited area?," IEEE Trans. Antennas Propag., Vol. 60, 1126-1131, 2012.

    13. Uribe-Patarroyo, N., A. Fraine, D. Simon, O. Minaeva, and A. Sergienko, "Object identification using correlated orbital angular momentum (OAM) states," Frontiers in Optics, Rochester, NY, USA, 2012.

    14. Pozar, D. M., "Microstrip antennas," Proc. IEEE, Vol. 80, 79-91, 1992.

    15. Wang, Y. J. and C. K. Lee, "Compact and broadband microstrip patch antenna for the 3G IMT- 2000 handsets applying styrofoam and shorting-posts," Progress In Electromagnetics Research, Vol. 47, 75-85, 2004.

    16. Bilotti, F. and C. Vegni, "Design of polygonal patch antennas for portable devices," Progress In Electromagnetics Research B, Vol. 24, 33-47, 2010.

    17. Islam, M. T., M. N. Shakib, and N. Misran, "Broadband E-H shaped microstrip patch antenna for wireless systems," Progress In Electromagnetics Research, Vol. 98, 163-173, 2009.

    18. Barbuto, M., F. Bilotti, and A. Toscano, "Design of a multifunctional SRR-loaded printed monopole antenna," Int. J. RF Microw. CAE, Vol. 22, 552-557, 2012.

    19. Derneryd, A. G., "Analysis of the microstrip disk antenna element," IEEE Trans. Antennas Propagat., Vol. 27, 660-664, 1979.

    20. Huang, J., "Circularly polarized conical patterns from circular microstrip antennas," IEEE Trans. Antennas Propagat., Vol. 32, 991-994, 1984.

    21. Courtial, J., D. A. Robertson, K. Dholakia, L. Allen, and M. J. Padgett, "Rotational frequency shift of a light beam," Phys. Rev. Lett., Vol. 81, 4828-4830, 1998.

    22. Lo, Y. T. and W. F. Richards, "Perturbation approach to design of circularly polarized microstrip antennas," Electron. Lett., Vol. 17, 383-385, 1981.

    23. Du, B. and E. Yung, "A single-feed TM21-mode circular patch antenna with circular polarization," Microw. Opt. Technol. Lett., Vol. 33, 154-156, 2002.

    24. CST Studio Suite 2012, CST Computer Simulation Technology AG, Available at: www.cst.com.