Vol. 147

Latest Volume
All Volumes
All Issues

Controlling Light on the Nanoscale (Invited Review)

By John Pendry
Progress In Electromagnetics Research, Vol. 147, 117-126, 2014


In many ways light and nanoscience do not mix well. By convention light can be focussed to a spot no smaller than about a micron whereas nano structures by definition are three orders of magnitude smaller in scale. However recent theoretical advances show how to control light at the nanoscale, provided we can find the correct materials for our devices. I shall describe these new theories, and how they enable us to concentrate light to better than a nanometre. In this way light can detect single molecules, and the huge concentrations of optical energy can force photons to interact with one another which they normally do not do.


John Pendry, "Controlling Light on the Nanoscale (Invited Review)," Progress In Electromagnetics Research, Vol. 147, 117-126, 2014.


    1. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell's equations," Journal of Modern Optics, Vol. 43, 773-793, 1996.

    2. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Optics Express, Vol. 14, No. 21, 9794-9804, 2006.

    3. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.

    4. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.

    5. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Demonstration of a metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.

    6. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced non-linear phenomena," IEEE Trans. Micr. Theory and Techniques, Vol. 47, 2075, 1999.

    7. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773, 1996.

    8. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three dimensional optical metamaterial exhibiting negative refractive index," Nature, Vol. 455, 376, 2008.

    9. Xiao, S., V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H. K. Yuan, and V. M. Shalaev, "Loss-free and active optical negative-index metamaterials," Nature, Vol. 466, 735, 2010.

    10. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Soviet Physics USPEKI, Vol. 10, 509, 1968.

    11. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, 4184, 2000.

    12. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.

    13. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, 534, 2005.

    14. Blaikie, R. J. and D. O. S. Melville, "Imaging through planar silver lenses in the optical near field," J. Opt. A: Pure Appl. Opt., Vol. 7, S176, 2005.

    15. Pendry, J. B., A. Aubry, D. R. Smith, and S. A. Maier, "Transformation optics and subwavelength control of light," Science, Vol. 337, 549-552, 2012.

    16. Hill, , R. T., et al., "Leveraging nanoscale plasmonic modes to achieve reproducible enhancement of light," Nano Letters, Vol. 10, 4150, 2010.

    17. Pendry, J. B., "Negative refraction," Contemporary Physics, Vol. 45, 191-202, 2004.

    18. Pendry, J. B., "Metamaterials and the control of electromagnetic fields," Coherence and Quantum Optics IX, edited by N. P. Bigelow, J. H. Eberly, and C. R. Stroud, Jr. (OSA Publications, 2009), 42-52, 2008.

    19. Aubry, A. and J. B. Pendry, "Transformation optics for plasmonics," Active Plasmonics and Tuneable Plasmonic Metamaterials, A. Zayats and S. Maier (eds.), John Wiley & Sons, 2013.