Assessment of biodiversity of pollinators on the landscape scale or estimation of fluxes of disease-transmitting biting midges constitutes a major technical challenge today. We have developed a laser-radar system for field entomology based on the so called Scheimpflug principle and a continuous-wave laser. The sample-rate of this method is unconstrained by the round-trip time of the light, and the method allows assessment of the fast oscillatory insect wing-beats and harmonics over kilometers range, e.g., for species identification and relating abundances to the topography. Whereas range resolution in conventional lidars is limited by the pulse duration, systems of the Scheimpflug type are limited by the diffraction of the telescopes. However, in the case of sparse occurrence of the atmospheric insects, where the optical cross-section oscillates, estimation of the range and spacing between individuals with a precision beyond the diffraction limit is now demonstrated. This enables studies of insect interaction processes in-situ.
2. Pasquet, R. S., A. Peltier, M. B. Hufford, E. Oudin, J. Saulnier, L. Paul, J. T. Knudsen, H. R. Herren, and P. Gepts, "Long-distance pollen flow assessment through evaluation of pollinator foraging range suggests transgene escape distances," PNAS, Vol. 105, 13456-13461, doi:10.1073/pnas.0806040105, 2008.
doi:10.1073/pnas.0806040105
3. Ovaskainen, O., A. D. Smith, J. L. Osborne, D. R. Reynolds, N. L. Carreck, A. P. Martin, K. Niitepold, and I. Hanski, "Tracking butterfly movements with harmonic radar reveals an effect of population age on movement distance," PNAS, Vol. 105, 19090-19095, doi:10.1073/pnas.0802066105, 2008.
doi:10.1073/pnas.0802066105
4. Drake, V. A. and D. R. Reynolds, Radar Entomology: Observing Insect Flight and Migration, CABI, Wallingford, Oxfordshire, Boston, MA, 2012.
doi:10.1079/9781845935566.0000
5. Brydegaard, M., P. Samuelsson, M. W. Kudenov, and S. Svanberg, "On the exploitation of mid-infrared iridescence of plumage for remote classification of nocturnal migrating birds," Appl. Spectr. (including front page feature), Vol. 67, 477-490, 2013.
doi:10.1366/12-06860
6. Runemark, A., M. Wellenreuther, H. Jayaweera, S. Svanberg, and M. Brydegaard, "Rare events in remote dark field spectroscopy: an ecological case study of insects," IEEE JSTQE, Vol. 18, 1573-1582, doi:10.1109/jstqe.2012.2184528, 2012.
7. Guan, Z., M. Brydegaard, P. Lundin, M. Wellenreuther, A. Runemark, E. Svensson, and S. Svanberg, "Insect monitoring with fluorescence lidar techniques: field experiments," Appl. Opt., Vol. 49, 1-11, 2010.
8. Mei, L., Z. G. Guan, H. J. L. J. Zhou, Z. R. Zhu, J. A. Cheng, F. J. Chen, Lofstedt, C., S. Svanberg, and G. Somesfalean, "Agricultural pest monitoring using fluorescence lidar techniques," Appl. Phys. B, Vol. 106, 733-740, doi:10.1007/s00340-011-4785-8, 2011.
doi:10.1007/s00340-011-4785-8
9. Combes, S. A., D. E. Rundle, J. M. Iwasaki, and J. D. Crall, "Linking biomechanics and ecology through predator-prey interactions: Flight performance of dragonflies and their prey," J. Exp. Biol., Vol. 215, 903-913, 2012.
doi:10.1242/jeb.059394
10. Antoci, V., G. Handler, T. L. Campante, A. O. Thygesen, A. Moya, T. Kallinger, D. Stello, A. Grigahcene, H. Kjeldsen, T. R. Bedding, T. Luftinger, J. Christensen-Dalsgaard, G. Catanzaro, A. Frasca, P. De Cat, K. Uytterhoeven, H. Bruntt, G. Houdek, D. W. Kurtz, and P. Lenz, "The excitation of solar-like oscillations in a δSct star by efficient envelope convection," Nature, Vol. 477, 570-573, doi:10.1038/nature10389, 2011.
doi:10.1038/nature10389
11. Moore, A. and R. H. Miller, "Automated identification of optically sensed aphid (Homoptera: Aphidae) wingbeat waveforms," Ann. Entomol. Soc. Am., Vol. 95, 1-8, 2002.
doi:10.1603/0013-8746(2002)095[0001:AIOOSA]2.0.CO;2
12. Batista, G. E., E. J. Keogh, A. Mafra-Neto, and E. Rowton, Secondary ``SIGKDD demo: Sensors and software to allow computational entomology, an emerging application of data mining", 761-764, ACM, San Diego, California, USA, 2011.
13. Svensson, E. I., F. Eroukhmanoff, K. Karlsson, A. Runemark, and A. Brodin, "A role for learning in population divergence of mate preferences," Evolution, Vol. 64, 3101-3113, 2010.
doi:10.1111/j.1558-5646.2010.01085.x
14. Mayagaya, V. S., K. Michel, M. Q. Benedict, G. F. Killeen, R. A. Wirtz, H. M. Ferguson, and F. E. Dowell, "Non-destructive determination of age and species of Anopheles gambiaes.l. using Near-infrared spectroscopy," Am. J. Trop. Med. Hyg., Vol. 81, 622-630, doi:10.4269/ajtmh.2009.09-0192, 2009.
doi:10.4269/ajtmh.2009.09-0192
15. Peiris, K. H., B. S. Drolet, L.W. Cohnstaedt, and F. E. Dowell, "Infrared absorption characteristics of culicoides sonorensis in relation to insect age," American Journal of Agricultural Science and Technology, Vol. 2, 49-61, 2014.
16. Torok, S., Kilohertz Electro-optics for Remote Sensing of Insect Dispersal, Master thesis, Lun University, 2013.
17. Althausen, D., D. Muller, A. Ansmann, U. Wandinger, H. Hube, E. Clauder, and S. Zorner, "Scanning 6-wavelength 11-channel aerosol lidar," J. Atmospheric, and Oceanic Tech., Vol. 17, 1469, 2000.
doi:10.1175/1520-0426(2000)017<1469:SWCAL>2.0.CO;2
18. Jonsson, P., M. Elmqvist, O. Gustafsson, F. Kullander, R. Persson, G. Olofsson, T. Tjarnhage, O. Farsund, T. V. Haavardsholm, and G. Rustad, "Evaluation of biological aerosol stand-off detection at a field trial," Proc. of SPIE, 74840I-74814, 2009.
19. Shevtsova, E., C. Hansson, D. H. Janzen, and J. Kjaerandsen, "Stable structural color patterns displayed on transparent insect wings," PNAS, Vol. 108, 668-673, doi:10.1073/pnas.1017393108, 2011.
doi:10.1073/pnas.1017393108
20. Brydegaard, M., "Advantages of shortwave infrared LIDAR entomology," Imaging and Applie Optics, LW2D.6 Optical Society of America, 2014.
21. Yin, H., L. Shi, J. Sha, Y. Li, Y. Qin, B. Dong, S. Meyer, X. Liu, L. Zhao, and J. Zi, "Iridescence in the neck feathers of domestic pigeons," Phys. Rev. E, Vol. 74, 051916, doi:10.1103/PhysRevE.74.051916, 2006.
doi:10.1103/PhysRevE.74.051916
22. Blais, F., "Review of 20 years of range sensor development," J. Electron. Imaging, Vol. 13, 231-243, doi:10.1117/1.1631921, 2004.
doi:10.1117/1.1631921
23. Hell, S. W., "Far-field optical nanoscopy," Science, Vol. 316, 1153-1158, doi:10.1126/science.1137395, 2007.
doi:10.1126/science.1137395
24. Klar, T. A. and S. W. Hell, "Subdiffraction resolution in far-field fluorescence microscopy," Opt. Lett., Vol. 24, 954-956, 1999.
doi:10.1364/OL.24.000954
25. Hell, S. W. and J. Wichmann, "Breaking the diffraction resolution limit by stimulated emission: Stimulated-emission-depletion fluorescence microscopy," Opt. Lett., Vol. 19, 780-782, doi:10.1364/OL.19.000780, 1994.
doi:10.1364/OL.19.000780
26. Svanberg, S., G. Y. Yan, T. P. Duffey, and A. L. Schawlow, "High-contrast Doppler-free transmission spectroscopy," Opt. Lett., Vol. 11, 138-140, doi:10.1364/OL.11.000138, 1986.
doi:10.1364/OL.11.000138
27. Svanberg, S., G. Y. Yan, T. P. Duffey, W. M. Du, T. W. H¨ansch, and A. L. Schawlow, "Saturation spectroscopy for optically thick atomic samples," J. Opt. Soc. Am. B, Vol. 4, 462-469, doi:10.1364/JOSAB.4.000462, 1987.
doi:10.1364/JOSAB.4.000462
28. Betzig, E., G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. H, "Imaging intracellular fluorescent proteins at nanometer resolution," Science, Vol. 313, 1642-1645, doi:10.1126/science.1127344, 2006.
doi:10.1126/science.1127344
29. Rust, M. J., M. Bates, and X. Zhuang, "Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM)," Nat. Methods, Vol. 3, 793-795, doi:10.1038/nmeth929, 2006.
doi:10.1038/nmeth929
30. Huang, B., M. Bates, and X. Zhuang, "Super-resolution fluorescence microscopy," Ann. Rev. Biochem., Vol. 78, 993-1016, doi:doi:10.1146/annurev.biochem.77.061906.092014, 2009.
doi:10.1146/annurev.biochem.77.061906.092014
31. Kaissling, K.-E. and E. Priesner, "Die Riechschwelle des Seidenspinners," Naturwissenschaften, Vol. 57, 23-28, doi:10.1007/BF00593550, 1970.
doi:10.1007/BF00593550
32. Shaw, J. A., N. L. Seldomridge, D. L. Dunkle, P. W. Nugent, and L. H. Spangler, "Polarization lidar measurements of honey bees in flight for locating land mines," Opt. Expr., Vol. 13, 5853-5863, 2005.
doi:10.1364/OPEX.13.005853
33. Carlsten, E. S., G. R.Wicks, K. S. Repasky, J. L. Carlsten, J. J. Bromenshenk, and C. B. Henderson, "Field demonstration of a scanning lidar and detection algorithm for spatially mapping honeybees for biological detection of land mines," Appl. Opt., Vol. 50, 2112-2123, 2011.
doi:10.1364/AO.50.002112