In this paper we present an alternative approach to addressing the problem of scattering reduction for radar targets, which have recently been dealt with by using the Transformation Optics (TO) algorithm which typically calls for the use of Metamaterials (MTMs) that are inherently narrowband, dispersive and highly sensitive to polarization as well as to the incident angle. The present design utilizes realistic lossy materials that can be conveniently fabricated in the laboratory, and are wideband as well as relatively insensitive to polarization and incident angle of the incoming wave. A modified interpretation of the TO algorithm is presented and is employed the design of RCS-reducing absorbers for arbitrarily shaped targets, and not just for canonical shapes, e.g., cylinders, for which cloaks have been designed by using the TO. The paper also briefly examines the topic of performance enhancement of absorbers by using graphene materials and embedded Frequency Structure Surfaces (FSSs). We begin by presenting the design procedure for planar absorbers, and then examine how well those designs perform for arbitrarily-shaped objects. Finally, we discuss how the planar design can be modified by tailoring the material parameters of the coating for specific object shapes. A number of test cases are included as examples to illustrate the application of the proposed design methodology, which is a modification of the classical TO paradigm.
2. Leonhardt, U. and T. Tyc, "Broadband invisibility by non-euclidean cloaking," Science, Vol. 323, 110-112, 2009.
doi:10.1126/science.1166332
3. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Opt. Express, Vol. 14, 9794-9804, 2006.
doi:10.1364/OE.14.009794
4. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic field," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907
5. Chen, H., B. Wu, B. Zhang, and J. A. Kong, "Electromagnetic wave interactions with a metamaterial cloak," Phys. Rev. Lett., Vol. 99, 063903, 2007.
doi:10.1103/PhysRevLett.99.063903
6. Smith, D. R., Y. Urzhumov, N. B. Kundtz, and N. I. Landy, "Enhancing imaging systems using transformation optics," Opt. Express, Vol. 18, 21238, 2010.
doi:10.1364/OE.18.021238
7. Cummer, S. A., B. Popa, D. Schurig, D. R. Smith, and J. Pendry, "Full-wave simulations of electromagnetic cloaking structures," Phys. Rev. E, Vol. 74, 036621, 2006.
doi:10.1103/PhysRevE.74.036621
8. Li, J. and J. B. Pendry, "Hiding under the carpet: A new strategy for cloaking," Phys. Rev. Lett., Vol. 101, 203901, 2008.
doi:10.1103/PhysRevLett.101.203901
9. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628
10. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493
11. Kwon, D.-H. and D. H. Werner, "Transformation electromagnetics: An overview of the theory and applications," IEEE Antennas and Propagation Magazine, Vol. 52, No. 1, 24-46, 2010.
doi:10.1109/MAP.2010.5466396
12. Yang, R., W. Tang, and Y. Hao, "A broadband zone plate lens from transformation optics," Opt. Express, Vol. 19, No. 13, 12348-12355, 2011.
doi:10.1364/OE.19.012348
13. Ruan, Z. and S. Fan, "Superscattering of light from subwavelength nanostructures," Phys. Rev. Lett., Vol. 105, 013901, 2010.
doi:10.1103/PhysRevLett.105.013901
14. Ergin, T., N. Stenger, P. Brenner, J. B. Pendry, and M. Wegener, "Three-dimensional invisibility cloak at optical wavelengths," Science, Vol. 328, 337-339, 2010.
doi:10.1126/science.1186351
15. Chen, H. Y. and C. T. Chan, "Transformation media that rotate electromagnetic fields," Appl. Phys. Lett., Vol. 90, 241105, 2007.
doi:10.1063/1.2748302
16. Leonhardt, U. and T. G. Philbin, "Transformation optics and the geometry of light," Prog. Opt., Vol. 53, 69-152, 2009.
doi:10.1016/S0079-6638(08)00202-3
17. Chen, H., C. T. Chan, and P. Sheng, "Transformation optics and metamaterials," Nature Mater., Vol. 9, 387-396, 2010.
doi:10.1038/nmat2743
18. Huidobro, P. A., M. L. Nesterov, L. Martin-Moreno, and F. J. Garcia-Vidal, "Transformation optics for plasmonics," Nano Lett., Vol. 10, 1985-1990, 2010.
doi:10.1021/nl100800c
19. Edwards, B., A. Alu, M. G. Silveirinha, and N. Engheta, "Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials," Phys. Rev. Lett., Vol. 103, 153901, 2009.
doi:10.1103/PhysRevLett.103.153901
20. Alu, A. and N. Engheta, "Achieving transparency with plasmonic and metamaterial coatings," Phys. Rev. E, Vol. 72, 016623, 2005.
doi:10.1103/PhysRevE.72.016623
21. Luo, Y., J. Zhang, H. Chen, S. Xi, and B.-I. Wu, "Cylindrical cloak with axial permittivity/permeability spatially invariant," Appl. Phys. Lett., Vol. 93, 033504, 2008.
doi:10.1063/1.2953433
22. Xi, S., H. Chen, B. Zhang, B.-I. Wu, and J. A. Kong, "Route to low-scattering cylindrical cloaks with finite permittivity and permeability," Phys. Rev. B, Vol. 79, 155122, 2010.
23. Alu, A., A. D. Yaghijan, R. A. Shore, and M. G. Silveirinha, "Causality relations in the homogenization of metamaterials," Phys. Rev. B, Vol. 84, 054305, 2011.
doi:10.1103/PhysRevB.84.054305
24. Cheng, Q., T. Cui, W. Jiang, and B. Cai, "An omnidirectional electromagnetic absorber made of metamaterials," New J. Phys., Vol. 12, 063006, 2010.
doi:10.1088/1367-2630/12/6/063006
25. Zentgraf, T., Y. Liu, M. H. Mikkelsen, J. Valentine, and X. Zhang, "Plasmonic Luneburg and Eaton lenses," Nature Nano., Vol. 6, 151-155, 2011.
doi:10.1038/nnano.2010.282
26. Narimanov, E. E. and A. V. Kildishev, "Optical black hole: Broadband omnidirectional light absorber," Appl. Phys. Lett., Vol. 95, 041106, 2009.
doi:10.1063/1.3184594
27. Gong, Y. X., L. Zhen, J. T. Jiang, C. Y. Xu, and W. Z. Shao, "Synthesis and microwave electromagnetic properties of CoFe alloy nanoflakes prepared with hydrogen-thermal reduction method," J. Appl. Phys., Vol. 106, 064302, 2009.
doi:10.1063/1.3211987
28. Zhen, L., Y. X. Gong, J. T. Jiang, C. Y. Xu, W. Z. Shao, P. Liu, and J. Tang, "Synthesis of CoFe/Al2O3 composite nanoparticles as the impedance matching layer of wideband multilayer absorber," J. Appl. Phys., Vol. 109, 07A332, 2011.
doi:10.1063/1.3564939
29. Tretyakov, S., P. Alitalo, O. Luukkonen, and C. Simovski, "Broadband electromagnetic cloaking of long cylindrical objects," Phys. Rev. Lett., Vol. 103, 103905, 2009.
doi:10.1103/PhysRevLett.103.103905
30. Alitalo, P. and S. A. Tretyakov, "Electromagnetic cloaking of strongly scattering cylindrical objects by a volumetric structure composed of conical metal plates," Phys. Rev. B, Vol. 82, 245111, 2010.
doi:10.1103/PhysRevB.82.245111
31. Vehmas, J., P. Alitalo, and S. A. Tretyakov, "Experimental demonstration of antenna blockage reduction with a transmission-line cloak," IET Microwaves, Antennas & Propagation, Vol. 6, No. 7, 830-834, 2012.
doi:10.1049/iet-map.2011.0509
32. De Bellis, G., I. M. De Rosa, A. Dinescu, M. S. Sarto, and A. Tamburrano, "Electromagnetic absorbing nanocomposites including carbon fibers, nanotubes and graphene nanoplatelets," 2010 IEEE International Symposium on Electromagnetic Compatibility (EMC), 202-207, 2010.
doi:10.1109/ISEMC.2010.5711272
33. Tellakula, R. A., V. K. Varadan, T. C. Shami, and G. N. Mathur, "Carbon fiber and nanotube based composites with polypyrrole fabric as electromagnetic absorbers," Smart Mater. Struct., Vol. 13, 1040-1044, 2004.
doi:10.1088/0964-1726/13/5/009
34. Zhou, Y. and R. Mittra, "Performance enhancement of RF absorbers by using resistively-loaded periodic screens," 2012 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-2, Jul. 8-14, 2012.
35. Mittra, R. and Y. Zhou, "Designing cloaks and absorbing blankets for scattering reduction using field and impedance transformation techniques," Computational Electromagnetics, Recent Advances and Engineering Applications, Chapter 14, R. Mittra, Ed., Springer, 2014, ISBN 978-1-4614-4381-0.
36. Ozgun, O. and M. Kuzuoglu, "Electromagnetic metamorphosis: Reshaping scatterers via conformal anisotropic metamaterial coatings," Microwave Opt. Technol. Lett., Vol. 49, 2386-2392, 2007.
doi:10.1002/mop.22784
37. Ozgun, O. and M. Kuzuoglu, "Utilization of anisotropic metamaterial layers in waveguide miniaturization and transitions," IEEE Microwave and Wireless Components Letters, Vol. 17, 754-756, 2007.
doi:10.1109/LMWC.2007.908039
38. Teixeira, F. L., "Closed-form metamaterial blueprints for electromagnetic masking of arbitrarily shaped convex PEC objects," IEEE Antennas Wireless Propagat. Lett., Vol. 6, 163-164, 2007.
doi:10.1109/LAWP.2007.894153
39. Qing, Y., W. Zhou, S. Huang, Z. Huang, F. Luo, and D. Zhu, "Evolution of double magnetic resonance behavior and electromagnetic properties of flake carbonyl iron and multi-walled carbon nanotubes filled epoxy-silicone," Journal of Alloys and Compounds, Vol. 583, 471-475, 2014.
doi:10.1016/j.jallcom.2013.09.002
40. Haupt, R. L. and D. H. Werner, Genetic Algorithms in Electromagnetics, John Wiley & Sons, 2007.
doi:10.1002/047010628X
41. Munk, B. A., Frequency Selective Surfaces: Theory and Design, Wiley, New York, 2000.
doi:10.1002/0471723770
42. Argyropoulos, C., E. Kallos, Y. Zhao, and Y. Hao, "Manipulating the loss in electromagnetic cloaks for perfect wave absorption," Opt. Express, Vol. 17, 8467-8475, 2009.
doi:10.1364/OE.17.008467
43. Argyropoulos, C., E. Kallos, and Y. Hao, "FDTD analysis of the optical black hole," J. Opt. Soc. Am. B, Vol. 27, 2020-2025, 2010.
doi:10.1364/JOSAB.27.002020
44. Kwon, D.-H., "Transformation electromagnetics and optics," Forum for Electromagnetic Research Methods and Application Technologies (FERMAT), Vol. 1, 2014.