Vol. 158

Latest Volume
All Volumes
All Issues
2017-02-24

Shape Reconstruction via Equivalence Principles,Constrained Inverse Source Problems and Sparsity Promotion

By Martina Bevacqua and Tommaso Isernia
Progress In Electromagnetics Research, Vol. 158, 37-48, 2017
doi:10.2528/PIER16111404

Abstract

A new approach for position and shape reconstruction of both penetrable and impenetrable objects from the measurements of the scattered fields is introduced and described. The approach takes advantage of the fact that for perfect electric conductors the induced currents are localized on the boundary, and equivalent sources also placed on the surface of the scatterers can be considered in the case of dielectric targets by virtue of the equivalence theorem. Starting from these considerations, a new inversion approach is formulated in order to retrieve the location and the boundary of unknown objects. Examples with both numerical and experimental data are given to demonstrate and assess the effectiveness of the method.

Citation


Martina Bevacqua and Tommaso Isernia, "Shape Reconstruction via Equivalence Principles,Constrained Inverse Source Problems and Sparsity Promotion," Progress In Electromagnetics Research, Vol. 158, 37-48, 2017.
doi:10.2528/PIER16111404
http://test.jpier.org/PIER/pier.php?paper=16111404

References


    1. Scapaticci, R., L. Di Donato, I. Catapano, and L. Crocco, "A feasibility study on microwave imaging for brain stroke monitoring," Progress In Electromagnetics Research B, Vol. 40, 305-324, 2012.
    doi:10.2528/PIERB12022006

    2. Bozza, G., M. Brignone, and M. Pastorino, "Application of the no-sampling linear sampling method to breast cancer detection," IEEE Trans. Biomed. Eng., Vol. 57, No. 10, 2525-2534, 2010.
    doi:10.1109/TBME.2010.2055059

    3. Bozza, G., M. Brignone, M. Pastorino, M. Piana, and A. Randazzo, "A linear sampling approach to crack detection in microwave imaging," 2008 IEEE International Workshop on Imaging Systems and Techniques, 222-226, Crete, 2008.
    doi:10.1109/IST.2008.4659973

    4. Cakoni, F. and D. Colton, Qualitative Methods in Inverse Scattering Theory, Springer-Verlag, Berlin, Germany, 2006.

    5. Agarwal, K. and X. Chen, "Applicability of MUSIC-type imaging in two-dimensional electromagnetic inverse problems," IEEE Trans. Antennas Propag., Vol. 56, No. 10, 3217-3223, 2008.
    doi:10.1109/TAP.2008.929434

    6. Zhong, Y. and X. Chen, "MUSIC imaging and electromagnetic inverse scattering of multiplescattering small anisotropic spheres," IEEE Trans. Antennas Propag., Vol. 55, No. 12, 3542-3549, 2007.
    doi:10.1109/TAP.2007.910488

    7. Iakovleva, E., S. Gdoura, D. Lesselier, and G. Perrusson, "Multistatic response matrix of a 3D inclusion in half space and MUSIC imaging," IEEE Trans. Antennas Propag., Vol. 55, No. 9, 2598-2609, 2007.
    doi:10.1109/TAP.2007.904103

    8. Tortel, H., G. Micolau, and M. Saillard, "Decomposition of the time reversal operator for electromagnetic scattering," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 687-719, 1999.
    doi:10.1163/156939399X01113

    9. Devaney, A. J., E. A. Marengo, and F. K. Gruber, "Time-reversal-based imaging and inverse scattering of multiply scattering point targets," J. Acoust. Soc. Am., Vol. 118, No. 5, 3129-3138, 2005.
    doi:10.1121/1.2042987

    10. Colton, D. and A. Kirsch, "A simple method for solving inverse scattering problems in the resonant region," Inverse Probl., Vol. 12, 383-393, 1996.
    doi:10.1088/0266-5611/12/4/003

    11. Colton, D., M. Piana, and R. Potthast, "A simple method using morozov’s discrepancy principle for solving inverse scattering problems," Inverse Probl., Vol. 13, 1477-1493, 1997.
    doi:10.1088/0266-5611/13/6/005

    12. Catapano, I., L. Crocco, and T. Isernia, "On simple methods for shape reconstruction of unknown scatterers," IEEE Trans. Antennas Propag., Vol. 55, No. 5, 1431-1436, 2007.
    doi:10.1109/TAP.2007.895563

    13. Kirsch, A., "Characterization of the shape of a scattering obstacle using the spectral data of the far-field operator," Inverse Probl., Vol. 14, 1489-1512, 1998.
    doi:10.1088/0266-5611/14/6/009

    14. Kirsch, A., "Factorization of the far-field operator for the inhomogeneous medium case and an application in inverse scattering theory," Inverse Probl., Vol. 15, 413-429, 1999.
    doi:10.1088/0266-5611/15/2/005

    15. Potthast, R., "A point source method for inverse acoustic and electromagnetic obstacle scattering problems," IMA J. Appl. Math., Vol. 61, No. 2, 119-140, 1998.
    doi:10.1093/imamat/61.2.119

    16. Litman, A., D. Lesselier, and F. Santosa, "Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set," Inverse Probl., Vol. 14, No. 3, 685-706, 1998.
    doi:10.1088/0266-5611/14/3/018

    17. Dorn, O. and D. Lesselier, "Level set methods for inverse scattering," Inverse Probl., Vol. 22, No. 4, R67-R131, 2006.
    doi:10.1088/0266-5611/22/4/R01

    18. Kleinman, R. E. and P. M. den Berg, "Two-dimensional location and shape reconstruction," Radio Science, Vol. 29, No. 4, 1157-1169, 1994.
    doi:10.1029/93RS03445

    19. Liseno, A. and R. Pierri, "Imaging perfectly conducting objects as support of induced currents: Kirchhoff approximation and frequency diversity," J. Opt. Soc. Am. A, Vol. 19, 1308-1318, 2002.
    doi:10.1364/JOSAA.19.001308

    20. Shen, J., Y. Zhong, X. Chen, and L. Ran, "Inverse scattering problems of reconstructing perfectly electric conductors with TE illumination," IEEE Trans. Antennas Propag., Vol. 61, No. 9, 4713-4721, Sept. 2013.
    doi:10.1109/TAP.2013.2271891

    21. Poli, L., G. Oliveri, and A. Massa, "Imaging sparse metallic cylinders through a local shape function Bayesian compressive sensing approach," J. Opt. Soc. Am. A, Vol. 30, No. 6, 1261-1272, 2013.
    doi:10.1364/JOSAA.30.001261

    22. Stevanovic, M. N., L. Crocco, A. R. Djordjevic, and A. Nehorai, "Higher order sparse microwave imaging of PEC scatterers," IEEE Trans. Antennas Propag., Vol. 64, No. 3, 988-997, Mar. 2016.
    doi:10.1109/TAP.2016.2521879

    23. Franceschetti, G., Electromagnetics: Theory, Techniques, and Engineering Paradigms, Springer Science & Business Media, 2013.

    24. Donoho, D., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, 2006.
    doi:10.1109/TIT.2006.871582

    25. Massa, A., P. Rocca, and G. Oliveri, "Compressive sensing in electromagnetics — A review," IEEE Antennas and Propagation Magazine, Vol. 57, No. 1, 224-238, Feb. 2015.
    doi:10.1109/MAP.2015.2397092

    26. Bevacqua, M., L. Crocco, L. Di Donato, T. Isernia, and R. Palmeri, "Exploiting field conditioning and sparsity for microwave imaging of non-weak buried targets," Radio Sci., 2016.

    27. Shah, P., U. K. Khankhoje, and M. Moghaddam, "Inverse scattering using a joint L1L2 normbased regularization," IEEE Trans. Antennas Propag., Vol. 64, No. 4, 1373-1384, Apr. 2016.
    doi:10.1109/TAP.2016.2529641

    28. Azghani, M., P. Kosmas, and F. Marvasti, "Microwave medical imaging based on sparsity and an iterative method with adaptive thresholding," IEEE Trans. Medical Imaging, Vol. 34, No. 2, 357-365, 2015.
    doi:10.1109/TMI.2014.2352113

    29. Morabito, A. F., R. Palmeri, and T. Isernia, "A compressive-sensing-inspired procedure for array antenna diagnostics by a small number of phaseless measurements," IEEE Trans. Antennas Propag., Vol. 64, No. 7, 3260-3265, Jul. 2016.
    doi:10.1109/TAP.2016.2562669

    30. Bevacqua, M., T. Isernia, L. Crocco, and L. Di Donato, "A (CS)2 approach to inverse scattering," 2014 IEEE Conference on Antenna Measurements & Applications (CAMA), 1-3, Nov. 16–19, 2014.

    31. Hawes, M. B. and W. Liu, "Compressive sensing-based approach to the design of linear robust sparse antenna arrays with physical size constraint," IET Microwaves, Antennas & Propagation, Vol. 8, No. 10, 736-746, 2014.
    doi:10.1049/iet-map.2013.0469

    32. Winters, D. W., B. D. Van Veen, and S. C. Hagness, "A sparsity regularization approach to the electromagnetic inverse scattering problem," IEEE Trans. Antennas Propag., Vol. 58, No. 1, 145-154, Jan. 2010.
    doi:10.1109/TAP.2009.2035997

    33. Colton, D. and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, Springer-Verlag, Berlin, Germany, 1998.
    doi:10.1007/978-3-662-03537-5

    34. Bertero, M. and P. Boccacci, Introduction to Inverse Problems in Imaging, Institute of Physics, Bristol, UK, 1998.
    doi:10.1887/0750304359

    35. Bucci, O. M. and T. Isernia, "Electromagnetic inverse scattering: Retrievable nformation and measurement strategies," Radio Sci., Vol. 32, 2123-2138, 1997.
    doi:10.1029/97RS01826

    36. Chen, S., D. Donoho, and M. Saunders, "Atomic decomposition by basis pursuit," SIAM J. Sci. Comput., Vol. 20, No. 1, 33-61, 1999.
    doi:10.1137/S1064827596304010

    37. Tibshirani, R., "Regression shrinkage and selection via the lasso," J. Roy. Stat. Soc. Ser., Vol. 58, No. 1, 267-288, 1996.

    38. Liu, Y., P. You, C. Zhu, X. Tan, and Q. H. Liu, "Synthesis of sparse or thinned linear and planar arrays generating reconfigurable multiple real patterns by iterative linear programming," Progress In Electromagnetics Research, Vol. 155, 27-38, 2016.
    doi:10.2528/PIER15120401

    39. Brancaccio, A., G. Leone, and R. Solimene, "Single-frequency subsurface remote sensing via a non-cooperative source," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 9, 1-15, 2016.
    doi:10.1080/09205071.2016.1182086

    40. Gennarelli, G., R. Solimene, F. Soldovieri, and M. G. Amin, "Three-dimensional through-wall sensing of moving targets using passive multistatic radars," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, Vol. 9, No. 1, 141-148, Jan. 2016.
    doi:10.1109/JSTARS.2015.2443078

    41. Bevacqua, M. T. and R. Scapaticci, "A compressive sensing approach for 3D breast cancer microwave imaging with magnetic nanoparticles as contrast agent," IEEE Transactions on Medical Imaging, Vol. 35, No. 2, 665-673, Feb. 2016.
    doi:10.1109/TMI.2015.2490340

    42. Soldovieri, F., A. Brancaccio, G. Leone, and R. Pierri, "Shape reconstruction of perfectly conducting objects by multiview experimental data," IEEE Trans. on Geosci. and Remote Sens., Vol. 43, No. 1, 65-71, Jan. 2005.
    doi:10.1109/TGRS.2004.839432

    43. Belkebir, K. and M. Saillard, "Special section: Testing inversion algorithms against experimental data," Inverse Probl., Vol. 7, 1565-2028, 2001.
    doi:10.1088/0266-5611/17/6/301

    44. CVX Research, Inc., CVX: Matlab software for disciplined convex programming, 2.0, http://cvxr.com/cvx, Apr. 2011.

    45. Grant, M. and S. Boyd, "Graph implementations for non smooth convex programs," Lecture Notes in Control and Information Sciences, 95-110, Chapter Recent Advances in Learning and Control (a tribute to M. Vidyasagar), Springer, 2008.
    doi:10.1007/978-1-84800-155-8_7

    46. Richmond, J., "Scattering by a dielectric cylinder of arbitrary cross section shape," IEEE Trans. Antennas Propag., Vol. 13, No. 3, 334-341, 1965.
    doi:10.1109/TAP.1965.1138427

    47. Wirgin, A., "The inverse crime," ArXiv Mathematical Physics e-prints, Jan. 2004.