Vol. 158

Latest Volume
All Volumes
All Issues
2017-04-09

Antenna Calibration Method for Dielectric Property Estimation of Biological Tissues at Microwave Frequencies

By David C. Garrett, Jeremie Bourqui, and Elise C. Fear
Progress In Electromagnetics Research, Vol. 158, 73-87, 2017
doi:10.2528/PIER16122204

Abstract

We aim to estimate the average dielectric properties of centimeter-scale volumes of biological tissues. A variety of approaches to measurement of dielectric properties of materials at microwave frequencies have been demonstrated in the literature and in practice. However, existing methods are not suitable for noninvasive measurement of in vivo biological tissues due to high property contrast with air, and the need to conform with the shape of the human body. To overcome this, a method of antenna calibration has been adapted and developed for use with an antenna system designed for biomedical applications, allowing for the estimation of permittivity and conductivity. This technique requires only two calibration procedures and does not require any special manufactured components. Simulated and measured results are presented between 3 to 8 GHz for materials with properties expected in biological tissues. Error bounds and an analysis of sources of error are provided.

Citation


David C. Garrett, Jeremie Bourqui, and Elise C. Fear, "Antenna Calibration Method for Dielectric Property Estimation of Biological Tissues at Microwave Frequencies," Progress In Electromagnetics Research, Vol. 158, 73-87, 2017.
doi:10.2528/PIER16122204
http://test.jpier.org/PIER/pier.php?paper=16122204

References


    1. Nitz, W. R., A. Oppelt, W. Renz, C. Manke, M. Lenhart, and J. Link, "On the heating of linear conductive structures as guide wires and catheters in interventional MRI," Journal of Magnetic Resonance Imaging, Vol. 13, No. 1, 105-114, 2001.
    doi:10.1002/1522-2586(200101)13:1<105::AID-JMRI1016>3.0.CO;2-0

    2. Nagaoka, T., S. Watanabe, K. Sakurai, E. Kunieda, S. Watanabe, M. Taki, and Y. Yamanaka, "Development of realistic high-resolution whole-body voxel models of Japanese adult males and females of average height and weight, and application of models to radio-frequency electromagnetic- field dosimetry," Physics in Medicine and Biology, Vol. 49, No. 1, 1-15, 2003.
    doi:10.1088/0031-9155/49/1/001

    3. Garrett, J. D. and E. C. Fear, "Average dielectric property analysis of complex breast tissue with microwave transmission measurements," Sensors, Vol. 15, No. 1, 1199-1216, 2015.
    doi:10.3390/s150101199

    4. Persson, M., A. Fhager, H. D. Trefna, Y. Yu, T. McKelvey, G. Pegenius, J.-E. Karlsson, and M. Elam, "Microwave-based stroke diagnosis making global prehospital thrombolytic treatment possible," IEEE Transactions on Biomedical Engineering, Vol. 61, No. 11, 2806-2817, 2014.
    doi:10.1109/TBME.2014.2330554

    5. Meaney, P. M., D. Goodwin, A. H. Golnabi, T. Zhou, M. Pallone, S. D. Geimer, G. Burke, and K. D. Paulsen, "Clinical microwave tomographic imaging of the calcaneus: A first-in-human case study of two subjects," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 12, 3304-3313, 2012.
    doi:10.1109/TBME.2012.2209202

    6. Butterworth, I., J. Seralles, C. S. Mendoza, L. Giancardo, and L. Daniel, "A wearable physiological hydration monitoring wristband through multi-path non-contact dielectric spectroscopy in the microwave range," 2015 IEEE MTT-S 2015 International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), 60-61, IEEE, 2015.
    doi:10.1109/IMWS-BIO.2015.7303776

    7. Irastorza, R. M., M. Mayosky, and F. Vericat, "Noninvasive measurement of dielectric properties in layered structure: A system identification approach," Measurement, Vol. 42, No. 2, 214-224, 2009.
    doi:10.1016/j.measurement.2008.06.001

    8. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz," Physics in Medicine and Biology, Vol. 41, No. 11, 2231-2249, 1996.
    doi:10.1088/0031-9155/41/11/001

    9. Gabriel, C., "Dielectric properties of biological tissue: Variation with age," Bioelectromagnetics, Vol. 26, No. S7, S12-S18, 2005.
    doi:10.1002/bem.20147

    10. Winters, D. W., J. D. Shea, P. Kosmas, B. D. Van Veen, and S. C. Hagness, "Three-dimensional microwave breast imaging: Dispersive dielectric properties estimation using patient-specific basis functions," IEEE Transactions on Medical Imaging, Vol. 28, No. 7, 969-981, 2009.
    doi:10.1109/TMI.2008.2008959

    11. Chandra, R., H. Zhou, I. Balasingham, and R. M. Narayanan, "On the opportunities and challenges in microwave medical sensing and imaging," IEEE Transactions on Biomedical Engineering, Vol. 62, No. 7, 1667-1682, 2015.
    doi:10.1109/TBME.2015.2432137

    12. Bourqui, J. and E. C. Fear, "System for bulk dielectric permittivity estimation of breast tissues at microwave frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 64, No. 9, 3001-3009, 2016.
    doi:10.1109/TMTT.2016.2586486

    13. Bourqui, J. and E. C. Fear, "Shielded UWB sensor for biomedical applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1614-1617, 2012.
    doi:10.1109/LAWP.2012.2235814

    14. Popovic, D., L. McCartney, C. Beasley, M. Lazebnik, M. Okoniewski, S. C. Hagness, and J. H. Booske, "Precision open-ended coaxial probes for in vivo and ex vivo dielectric spectroscopy of biological tissues at microwave frequencies," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1713-1722, 2005.
    doi:10.1109/TMTT.2005.847111

    15. Lavoie, B. R., M. Okoniewski, and E. C. Fear, "Estimating the effective permittivity for reconstructing accurate microwave-radar images," PLOS One, Vol. 11, No. 9, e0160849, 2016.
    doi:10.1371/journal.pone.0160849

    16. Engen, G. F. and C. A. Hoer, "Thru-reflect-line: An improved technique for calibrating the dual six-port automatic network analyzer," IEEE Transactions on Microwave Theory and Techniques, Vol. 27, No. 12, 987-993, 1979.
    doi:10.1109/TMTT.1979.1129778

    17. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies," IEEE Transactions on Instrumentation and Measurement, Vol. 39, No. 2, 387-394, 1990.
    doi:10.1109/19.52520

    18. Rolfes, I. and B. Schiek, "Calibration methods for microwave free space measurements," Advances in Radio Science, Vol. 2, No. A.1, 19-25, 2005.
    doi:10.5194/ars-2-19-2004

    19. Blackham, D. V., "Free space characterization of materials," Antenna Measurement Techniques Association Symposium, No. 15, 58-60, 1993.

    20. Bartley, P. G. and S. B. Begley, "Improved free-space S-parameter calibration," 2005 IEEE Instrumentationand Measurement Technology Conference Proceedings, Vol. 1, 372-375, IEEE, 2005.
    doi:10.1109/IMTC.2005.1604138

    21. Zhang, N., J. Cheng, G. Zhang, C. Cheng, and J. Liu, "A free-space measurement of complex permittivity in 8 GHz–40 GHz," 2014 Asia-Pacific Microwave Conference, 849-851, IEEE, 2014.

    22. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proceedings of the IEEE, Vol. 62, No. 1, 33-36, 1974.
    doi:10.1109/PROC.1974.9382

    23. Kanda, M., "Time domain sensors for radiated impulsive measurements," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 3, 438-444, 1983.
    doi:10.1109/TAP.1983.1143057

    24. Mason, S. J., Feedback Theory: Further Properties of Signal Flow Graphs, Research Laboratory of Electronics, Massachusetts Institute of Technology, 1956.

    25. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Physics in Medicine and Biology, Vol. 41, No. 11, 2271, 1996.
    doi:10.1088/0031-9155/41/11/003

    26. Henriksson, T., N. Joachimowicz, A. Joisel, C. Conessa, A. Diet, and J.-C. Bolomey, "Quantitative microwave breast phantom imaging using a planar 2.45 GHz system," General Assembly of the International Union of Radio Science, 1-4, 2008.

    27. Lazebnik, M., M. Okoniewski, J. H. Booske, and S. C. Hagness, "Highly accurate Debye models for normal and malignant breast tissue dielectric properties at microwave frequencies," IEEE Microwave and Wireless Components Letters, Vol. 17, No. 12, 822-824, 2007.
    doi:10.1109/LMWC.2007.910465

    28. Popovic, D. and M. Okoniewski, "Precision open-ended coaxial probe for dielectric spectroscopy of breast tissue," 2002 IEEE Antennas and Propagation Society International Symposium, 815-818, IEEE, 2002.

    29. Chalapat, K., K. Sarvala, J. Li, and G. S. Paraoanu, "Wideband reference-plane invariant method for measuring electromagnetic parameters of materials," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, No. 9, 2257-2267, 2009.
    doi:10.1109/TMTT.2009.2027160

    30. Amineh, R. K., M. Ravan, A. Trehan, and N. K. Nikolova, "Near-field microwave imaging based on aperture raster scanning with TEM horn antennas," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 928-940, 2011.
    doi:10.1109/TAP.2010.2103009

    31. Venkatesh, M. S. and G. S. V. Raghavan, "An overview of microwave processing and dielectric properties of agri-food materials," Biosystems Engineering, Vol. 88, No. 1, 1-18, 2004.
    doi:10.1016/j.biosystemseng.2004.01.007