Vol. 158

Latest Volume
All Volumes
All Issues
2017-04-09

Millimeter Wave Cavity Backed Microstrip Antenna Array for 79 GHz Radar Applications

By Mohammad Mosalanejad, Steven Brebels, Charlotte Soens, Ilja Ocket, and Guy Vandenbosch
Progress In Electromagnetics Research, Vol. 158, 89-98, 2017
doi:10.2528/PIER17010407

Abstract

In this paper, a 79 GHz microstrip antenna subarray, optimized for operation in a Phase Modulated Continuous Wave (PMCW) MIMO radar demonstrator is presented. The antenna combines all necessary features for this very specific type of applications. First of all, the spillover between transmit and receive channels in such a system is reduced by the combined effect of a microvia cage and the arraying of two elements. Second, it shows a wide band of 13.5%. Third, a wide beam in the E-plane (136 degrees), necessary for scanning, and a much smaller beamwidth in H-plane (36 degrees), advantageous to reduce mutual coupling, are realized. Finally, it has been fabricated with the advanced so-called ``Any-Layer'' technology. This technology is as accurate as other advanced technologies in the millimeter wave bands, but at a much lower cost, and thus very suited for mass production. The gain and radiation efficiency were simulated to be 7.27 dBi and 83%, respectively.

Citation


Mohammad Mosalanejad, Steven Brebels, Charlotte Soens, Ilja Ocket, and Guy Vandenbosch, "Millimeter Wave Cavity Backed Microstrip Antenna Array for 79 GHz Radar Applications," Progress In Electromagnetics Research, Vol. 158, 89-98, 2017.
doi:10.2528/PIER17010407
http://test.jpier.org/PIER/pier.php?paper=17010407

References


    1. Cui, B., C. Wang, and X.-W. Sun, "Microstrip Array Double-Antenna (MADA) technology applied in millimeter wave compact radar front-end," Progress In Electromagnetics Research, Vol. 66, 125-136, 2006.
    doi:10.2528/PIER06110902

    2. Camblor-Diaz, R., S. Ver-Hoeye, C. Vazquez-Antuna, G. R. Hotopan, M. Fernandez-Garcia, and F. Las Heras Andres, "Sub-millimeter wave frequency scanning 8 × 1 antenna array," Progress In Electromagnetics Research, Vol. 132, 215-232, 2012.
    doi:10.2528/PIER12072305

    3. Hasch, J., E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, "Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band," EEE Trans. Microw. Theory Techn., Vol. 60, No. 3, Part 2, 845-860, 2012.

    4. Guermandi, D., Q. Shi, A. Medra, T. Murata, W. Van Thillo, A. Bourdoux, P. Wambacq, and V. Giannini, "A 79 GHz binary phase-modulated continuous-wave radar transceiver with TX-to-RX spillover cancellation in 28 nm CMOS," 2015 IEEE International Solid-State Circuits Conference (ISSCC), 1-3, 2015.

    5. Wong, K. W., L. Chiu, and Q. Xue, "A 2-D van atta array using star-shaped antenna elements," IEEE Trans. Antennas Propag., Vol. 55, No. 4, 1204-1206, 2007.
    doi:10.1109/TAP.2007.893407

    6. Yousefzadeh, N., C. Ghobadi, and M. Kamyab, "Consideration of mutual coupling in a microstrip patch array using fractal elements," Progress In Electromagnetics Research, Vol. 66, 41-49, 2006.
    doi:10.2528/PIER06081401

    7. Farahbakhsh, A., M. Mosalanejad, Gh. Moradi, and Sh. Mohanna, "Using polygonal defect in ground structure to reduce mutual coupling in microstrip array antenna," Journal of Electromagnetic Waves and Applications, Vol. 28, No. 2, 194-201, 2014.
    doi:10.1080/09205071.2013.861750

    8. Ghosh, C. K., B. Mandal, and S. K. Parui, "Mutual coupling reduction of a dual frequency microstrip antenna array by using U-shaped DGS and inverted U-shaped microstrip resonator," Progress In Electromagnetics Research C, Vol. 48, 61-68, 2014.
    doi:10.2528/PIERC14020603

    9. Islam, M. T. and M. S. Alam, "Compact EBG structure for alleviating mutual coupling between patch antenna array elements," Progress In Electromagnetics Research, Vol. 137, 425-438, 2013.
    doi:10.2528/PIER12121205

    10. Yang, X. M., X. G. Liu, X. Y. Zhou, and T. J. Cui, "Reduction of mutual coupling between closely packed patch antennas using waveguided metamaterials," IEEE Antennas Wireless Propag. Lett., Vol. 11, 389-391, 2012.
    doi:10.1109/LAWP.2012.2193111

    11. Qamar, Z. and H. C. Park, "Compact waveguided metamaterials for suppression of mutual coupling in microstrip array," Progress In Electromagnetics Research, Vol. 149, 183-192, 2014.
    doi:10.2528/PIER14063002

    12. Li, Y. and K.-M. Luk, "60-GHz substrate integrated waveguide fed cavity-backed aperture-coupled microstrip patch antenna arrays," IEEE Trans. Antennas Propag., Vol. 63, No. 3, 1075-1085, 2015.
    doi:10.1109/TAP.2015.2390228

    13. Ou Yang, J., S. Bo, J. Zhang, and F. Yang, "A low-profile unidirectional cavity-backed log-periodic slot antenna," Progress In Electromagnetics Research, Vol. 119, 423-433, 2011.
    doi:10.2528/PIER11070503

    14. Kam, D., D. Liu, A. Natarajan, S. Reynolds, H. Chen, and B. A. Floyd, "LTCC packages with embedded phased-array antennas for 60 GHz communications," IEEE Antennas Wireless Propag. Lett., Vol. 21, No. 3, 142-144, 2011.

    15. Pazin, L. and Y. Leviatan, "A compact 60-GHz tapered slot antenna printed on LCP substrate for WPAN applications," IEEE Antennas Wireless Propag. Lett., Vol. 9, 272-275, 2010.
    doi:10.1109/LAWP.2010.2046612

    16. Brebels, S., Ch. Soens, W. De Raedt, and G. A. E. Vandenbosch, "Compact LTCC antenna package for 60 GHz wireless transmission of uncompressed video," IEEE MTT-S International Microwave Symposium Digest, 1-4, 2011.

    17. Liu, D., J. A. G. Akkermans, H. Chen, and B. Floyd, "Packages with integrated 60-GHz aperturecoupled patch antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 10, 3607-3616, 2011.
    doi:10.1109/TAP.2011.2163760

    18. Enayati, A., G. A. E. Vandenbosch, and W. De Raedt, "Millimeter-wave horn-type antenna-inpackage solution fabricated in a teflon-based multi-layer PCB technology," IEEE Trans. Antennas Propag., Vol. 61, No. 4, 1581-1590, 2013.
    doi:10.1109/TAP.2013.2242827

    19. Mosalanejad, M., S. Brebels, I. Ocket, V. Volski, C. Soens, and G. A. E. Vandenbosch, "A complete measurement system for integrated antennas at millimeter wavelengths," 9th European Conference on Antennas and Propagation (EuCAP), 1-5, 2015.

    20. Haimovich, A., R. Blum, and L. Cimini, "MIMO radar with widely separated antennas," IEEE Signal Process. Mag., Vol. 25, No. 1, 116-129, 2008.
    doi:10.1109/MSP.2008.4408448

    21. Blanch, S., J. Romeu, and I. Corbella, "Exact representation of antenna system diversity performance from input parameter description," Electronics Letters, Vol. 39, No. 9, 705-707, 2003.
    doi:10.1049/el:20030495

    22. Mohammadpour-Aghdam, K., S. Brebels, A. Enayati, R. Faraji-Dana, G. Vandenbosch, and W. DeRaedt, "RF probe influence study in millimeterwave antenna pattern measurements," International Journal of RF and Microwave Computer-aided Engineering, Vol. 21, No. 4, 413-420, 2011.
    doi:10.1002/mmce.20530

    23. Aspocomp PCB technology, Keilaranta, Finland, Website: “https://www.aspocomp.com”,.