A three-dimensional fully interlaced woven microstrip-fed substrate integrated waveguide has been designed, manufactured and experimentally validated. The waveguide has been conceived based on the conventional substrate integrated waveguide (SIW) technology and works in a range of frequencies between 7.5 GHz and 12 GHz. The SIW structure is suitable to be translated into different equivalent woven structures depending on the characteristics of the employed threads, as it has been presented in previous works. In this work, a structure based on rigid weft threads has been employed with the aim of translating both the waveguide and the corresponding SIW to microstrip transitions, into woven patterns and, therefore, achieving the main purpose of a complete integration of the circuit into the textile, avoiding the use of external transitions for its validation. Consequently, three prototypes, using three different lengths, have been manufactured and experimentally characterised, and the theoretically predicted behaviour of the prototypes has been experimentally verified.
2. Ginestet, G., et al., "Embroidered antenna-microchip interconnections and contour antennas in passive UHF RFID textile tags," IEEE Antennas Wireless and Propagation Letters, Vol. 16, 1205-1208, Nov. 2017.
doi:10.1109/LAWP.2016.2628086
3. Paraskevopoulos, A., et al., "Higher-mode textile patch antenna with embroidered vias for on-body communication," IET Microwaves, Antennas and Propagation, Vol. 10, No. 7, 802-807, May 2016.
doi:10.1049/iet-map.2015.0650
4. Kiourti, A., C. Lee, and J. L. Volakis, "Fabrication of textile antennas and circuits with 0.1 mm precision ," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 151-153, May 2016.
doi:10.1109/LAWP.2015.2435257
5. Wang, Z., L. Zhang, Y. Bayram, and J. L. Volakis, "Embroidered conductive fibers on polymer composite for conformal antennas," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 9, 4141-4147, Sep. 2012.
doi:10.1109/TAP.2012.2207055
6. Acti, T., et al., "Embroidered wire dipole antennas using novel copper yarns," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 638-641, Nov. 2015.
7. Senbokuya, Y. and H. Tsunoda, "A study on the circular patch antennas using conductive non-woven fiber fabrics," IEEE Antennas and Propagation Society International Symposium, San Antonio, TX, USA, Jun. 16-21, 2002.
8. Monti, G., L. Corchia, E. De Benedetto, and L. Tarricone, "Wearable logo-antenna for GPSGSM-based tracking systems," IET Microwaves, Antennas and Propagation, Vol. 10, No. 12, 1332-1338, Sep. 2016.
doi:10.1049/iet-map.2015.0774
9. Shawl, R. K., B. R. Longj, D. H.Werner, and A. Gavrin, "The characterization of conductive textile materials intended for radio frequency applications," IEEE Antennas and Propagation Magazine, Vol. 49, No. 3, 28-40, Jun. 2007.
doi:10.1109/MAP.2007.4293934
10. Jalil, M. E. B., M. K. Abd Rahim, N. A. Samsuri, N. A. Murad, H. A. Majid, K. Kamardin, and M. Azfar Abdullah, "Fractal koch multiband textile antenna performance with bending, wet conditions and on the human body," Progress In Electromagnetics Research, Vol. 140, 633-652, 2013.
doi:10.2528/PIER13041212
11. Jais, M. I., M. F. B. Jamlos, M. Jusoh, T. Sabapathy, M. R. Kamarudin, R. B. Ahmad, A. Abdullah Al-Hadi, E. I. Bin Azmi, P. J. Soh, G. A. E. Vandenbosch, and N. L. K. Ishak, "A novel 2.45 GHz switchable beam textile antenna (SBTA) for outdoor wireless body area network (WBAN) applications," Progress In Electromagnetics Research, Vol. 138, 613-627, 2013.
doi:10.2528/PIER13022610
12. Soh, P. J., S. J. Boyes, G. A. E. Vandenbosch, Y. Huang, and S. L. Ooi, "On-body characterization of dual-band all-textile PIFA," Progress In Electromagnetics Research, Vol. 129, 517-539, 2012.
doi:10.2528/PIER12052408
13. Lin, X., B. C. Seet, and F. Joseph, "Fabric antenna with body temperature sensing for BAN applications over 5G wireless systems," International Conference on Sensing Technologies, Auckland, New Zeland, Dec. 8-10, 2015.
14. Yahya, R., M. R. Kamarudin, N. Seman, and H. U. Iddi, "Eye shaped fabric antenna for UWB application," IEEE Antennas and Propagation Society International Symposium, Orlando, FL, Jul. 7-13, 2013.
15. Elmobarak Elobaid, H. A., S. K. Abdul Rahim, M. Himdi, X. Castel, and M. Abedian Kasgari, "A transparent and flexible polymer-fabric tissue UWB antenna for future wireless networks," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 1333-1336, Dec. 2016.
16. Whittow, W. G., et al., "Inkjet-printed microstrip patch antennas realized on textile for wearable applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 71-74, Jan. 2014.
doi:10.1109/LAWP.2013.2295942
17. Chauraya, A., et al., "Inkjet printed dipole antennas on textiles for wearable communications," IET Microwaves, Antennas and Propagation, Vol. 7, No. 9, 760-767, Jun. 2013.
doi:10.1049/iet-map.2013.0076
18. Scarpello, M. L., I. Kazani, C. Hertleer, H. Rogier, and D. Vande Ginste, "Stability and efficiency of screen-printed wearable and washable antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 838-841, Jul. 2012.
19. Akbari, M., L. Syd¨anheimo, Y. Rahmat-Sami, J. Virkki, and L. Ukkonen, "Implementation and performance evaluation of graphene-based passive UHF RFID textile tags," International Symposium on Electromagnetic Theory, Espoo, Finland, Aug. 14-18, 2016.
20. Georget, E., R. Abdeddaim, and P. Sabouroux, "Analytical, simulation and measurement studies of a dual-band open-sleeve curved meander line antenna on a flexible substrate," Progress In Electromagnetics Research, Vol. 145, 49-57, 2014.
doi:10.2528/PIER13122004
21. Hong, Y., J. Tak, and J. Choi, "An all-textile SIW cavity-backed circular ring-slot antenna for WBAN applications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1995-1999, 2016.
doi:10.1109/LAWP.2016.2549578
22. Castel, T., et al., "Capacity of broadband body-to-body channels between firefighters wearing textile SIW antennas," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 5, 1918-1931, May 2016.
doi:10.1109/TAP.2016.2535488
23. Moro, R., et al., "Textile microwave components in substrate integrated waveguide technology," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 2, 422-432, Feb. 2015.
doi:10.1109/TMTT.2014.2387272
24. Bozzi, M., et al., "Innovative SIW components on paper, textile, and 3D-printed substrates for the Internet of Things," Asia-Pacific Microwave Conference (APMC), Nanjing, China, Dec. 6-9, 2015.
25. Moro, R., et al., "Compact cavity-backed antenna on textile in substrate integrated waveguide (SIW) technology," European Microwave Conference, 1007-1010, Nuremberg, 2013.
26. Moro, R., et al., "Circularly-polarised cavity-backed wearable antenna in SIW technology," IET Microwaves, Antennas and Propagation, Vol. 12, No. 1, 127-131, Oct. 2018.
doi:10.1049/iet-map.2017.0271
27. Yan, S., P. J. Soh, and G. A. E. Vandenbosch, "Dual-band textile MIMO antenna based on substrate-integrated waveguide (SIW) technology," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 11, 4640-4647, Nov. 2015.
doi:10.1109/TAP.2015.2477094
28. Alonso, L., et al., "Millimetre wave textile integrated waveguide beamforming antenna for radar applications," Global Symposium on Millimeter-Waves, Montreal, QC, May 25-27, 2015.
29. Alonso-Gonzalez, L., et al., "On the techniques to develop millimeter-wave textile integrated waveguides using rigid warp threads," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 2, 751-761, Feb. 2018.
doi:10.1109/TMTT.2017.2777983
30. Alonso-Gonzalez, L., et al., "Fully textile-integrated microstrip-fed slot antenna for dedicated short-range communications," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 5, 2262-2270, May 2018.
doi:10.1109/TAP.2018.2814203
31. Hu, J., "Structure and mechnics of woven fabrics," Woodhead Publishing in Textiles, The Textile Institute, 63-66, New York, NY, USA, 2004.
32. Chao, L., B. Yu, A. Sharma, and M. N. Afsar, "Dielectric permittivity measurements of thin films at microwave and terahertz frequencies," European Microwave Conference, Manchester, UK, Oct. 10-13, 2011.
33. Steele, B. C., "Electronic ceramics," Elsevier Applied Science, 140, London, UK, USA, 1991.
34. Bilisik, K., N. S. Karaduman, N. E. Bilisik, and H. E. Bilisik, "Three-dimensional fully interlaced woven preforms for composites," Textile Research Journal, Vol. 83, No. 19, 2060-2084, 2013.
doi:10.1177/0040517513487791
35. Ma, P. and Z. Gao, "A review on the impact tension behaviors of textile structural composites," Journal of Industrial Textiles, Vol. 44, No. 4, 572-604, 2015.
doi:10.1177/1528083713503001