Vol. 170

Latest Volume
All Volumes
All Issues

High Efficiency Multi-Functional All-Optical Logic Gates Based on MIM Plasmonic Waveguide Structure with the Kerr-Type Nonlinear Nano-Ring Resonators

By Yaw-Dong Wu
Progress In Electromagnetics Research, Vol. 170, 79-95, 2021


In this paper, high efficiency multi-functional all-optical logic gates based on a metal-insulator-metal (MIM) plasmonic waveguide structure with Kerr-type nonlinear nano-ring resonators are proposed. The proposed structure consists of three straight input ports, eight nano-ring resonators filled with the Kerr-type nonlinear medium, and one straight output port. By fixing the input signal power and properly changing the control power, it can be used to design high efficiency multi-functional all-optical logic gates. The numerical results show that the proposed Kerr-type nonlinear plasmonic waveguide structures could really function as all-optical XOR/NXOR, AND/NAND, and OR/NOR logic gates in the optical communication spectral region. The transmission efficiency of the high logic state is higher than 95%, and that of the low logic state is about 0% at the wavelength 1310nm. The performance of the proposed logic gates was analyzed and simulated by the finite element method (FEM).


Yaw-Dong Wu, "High Efficiency Multi-Functional All-Optical Logic Gates Based on MIM Plasmonic Waveguide Structure with the Kerr-Type Nonlinear Nano-Ring Resonators," Progress In Electromagnetics Research, Vol. 170, 79-95, 2021.


    1. Raether, H., Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer-Verlag, Berlin, Germany, 1988.

    2. Barnes, W. L., A. Dereux, and T. Ebbesen, "Surface plasmon subwavelength optics," Nature, Vol. 424, 824-830, 2003.

    3. Takahara, J., Y. Suguru, T. Hiroaki, A. Morimoto, and T. Kobayashi, "Guiding of a one-dimensional optical beam with nanometer diameter," Opt. Lett., Vol. 22, 475-477, 1997.

    4. Veronis, G., Z. Yu, S. E. Kocabas, D. A. B. Miller, M. L. Brongersma, and S. Fan, "Metal-dielectric-metal plasmonic waveguide devices for manipulating light at the nanoscale," Chin. Opt. Lett., Vol. 7, 302-308, 2009.

    5. Han, Z., E. Forsberg, and S. He, "Surface plasmon Bragg gratings formed in metal-insulator-metal waveguides," IEEE Photon. Technol., Vol. 19, 91-93, 2007.

    6. Park, J., H. Kim, and B. Lee, "High order plasmonic Bragg reflection in the metal-insulator-metal waveguide Bragg grating," Opt. Express, Vol. 16, 413-425, 2008.

    7. Hosseini, A., H. Nejati, and Y. Massoud, "Modeling and design methodology for metal-insulator-metal plasmonic Bragg reflectors," Opt. Express, Vol. 16, 1475-1480, 2008.

    8. Hosseini, A. and Y. Massoud, "A low-loss metal-insulator-metal plasmonic Bragg reflector," Opt. Express, Vol. 14, 11318-11323, 2006.

    9. Pu, M., N. Yao, C. Hu, X. Xin, Z. Zhao, C. Wang, and X. Luo, "Directional coupler and nonlinear Mach-Zehnder interferometer based on metal insulator-metal plasmonic waveguide," Opt. Express, Vol. 18, 21030-21037, 2010.

    10. Hosseini, A. and Y. Massoud, "A rectangular metal-insulator-metal based nanoscale plasmonic resonator," IEEE-NANO, 81-84, 2007.

    11. Anglin, K., D. C. Adams, T. Ribaudo, and D. Wasserman, "Toothed mid-infrared metal-insulator-metal waveguides," CLEO, CTuS4, 2011.

    12. Bian, Y. and Q. Gong, "Compact all-optical interferometric logic gates based on one-dimensional metal-insulator-metal structures," Opt. Comm., Vol. 313, 27-35, 2014.

    13. Chen, Z. Q., J. Chen, Y. D. Li, D. Pan, W. Q. Lu, Z. Q. Hao, J. J. Xu, and Q. Sun, "Simulation of nanoscale multifunctional interferometric logic gates based on coupled metal gap waveguides," IEEE Photonics Technology Letters, Vol. 24, 1366-1368, 2012.

    14. Dolatabady, A. and N. Granpayeh, "All optical logic gates based on two dimensional plasmonic waveguides with nanodisk resonators," J. O. S. K., Vol. 16, 432, 2012.

    15. Wu, Y. D., "High transmission efficiency wavelength division multiplexer based on metal-insulator-metal plasmonic waveguides," OSA/IEEE J. of Lightwave Techn., Vol. 32, 4242, 2014.

    16. Pramono, Y. H. and Endarko, "Nonlinear waveguides for optical logic and computation," J. Nonlinear Opt. Phys. Mater., Vol. 10, 209-222, 2001.

    17. Wu, Y. D., "New all-optical switch based on the spatial soliton repulsion," Opt. Express, Vol. 14, 4005, 2006.

    18. Wu, Y. D., M. L. Whang, M. H. Chen, and R. Z. Tasy, "All-optical switch based on the local nonlinear Mach-Zehnder interferometer," Opt. Express, Vol. 15, 9883, 2007.

    19. Radwell, N., C. McIntyre, A. J. Scroggie, G. L. Oppo, W. J. Firth, and T. Ackemann, "Switching spatial dissipative solitons in a VCSEL with frequency selective feedback," Eur. Phys. J. D, Vol. 59, 121, 2010.

    20. Sarma, K., "Vector soliton switching in a fiber nonlinear directional coupler," Opt. Comm., Vol. 284, 186, 2011.

    21. Hatami, M., R. Attarzadeh, and A. Gharaati, "Design of an ultra-fast all-optical dark soliton switch in a Three-core Nonlinear Directional Coupler (TNLDC) made of chalcogenide glasses," J. Nonlinear Optic. Phys. Mat., Vol. 21, 1250038, 2012.

    22. Karimi, S., M. Ebnali-Heidari, and F. Forootan, "Design and modelling of a 1 × n all-optical nonlinear Mach-Zehnder switch controlled by wavelength and input power," Progress In Electromagnetics Research M, Vol. 28, 101-113, 2013.

    23. Liu, W.-J. and M. Lei, "All-optical switches using solitons within nonlinear fibers," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 18, 2288-2297, 2013.

    24. Zhong, H., B. Tian, Y. Jiang, M. Li, P. Wang, and W.-J. Liu, "All-optical soliton switching for the asymmetric fiber couplers," Eur. Phys. J. D, Vol. 67, 1, 2013.

    25. Wu, Y. D., "All-optical logic gates by using multibranch waveguide structure with localized optical nonlinearity," IEEE J. Sel. Top. Quantum. Electron., Vol. 11, 307, 2005.

    26. Serak, S. V., N. V. Tabiryan, M. Peccianti, and G. Assanto, "Spatial soliton all-optical logic gates," IEEE Photon. Techn. Lett., Vol. 18, 1287, 2006.

    27. Wu, Y. D., T. T. Shih, and M. H. Chen, "New all-optical logic gates based on the local nonlinear Mach-Zehnder interferometer," Opt. Express, Vol. 16, 248, 2008.

    28. Corbelli, M. M., F. Garzia, and R. Cusani, "All-optical EXOR for cryptographic application based on spatial solitons," J. of Info. Security, Vol. 4, 180, 2013.

    29. Kubota, Y. and T. Odagaki, "Logic gates based on soliton transmission in the toda lattice," Adv. in Appl. Phys., Vol. 1, 29, 2013.

    30. Bian, Y. and Q. Gong, "Compact all-optical interferometric logic gates based on one-dimensional metal-insulator-metal structures," Opt. Comm., Vol. 313, 27, 2014.

    31. Chen, Z., J. Chen, Y. Li, D. Pen, W. Lu, Z. Hao, J. Xu, and Q. Sun, "Simulation of nanoscale multifuntional interferometric logic gates based on coupled metal gap waveguides," IEEE Photon. Technol. Lett., Vol. 24, 1366, 2012.

    32. Dolatabady, A. and N. Granpayeh, "All optical logic gate based on two dimensional plasmonic waveguides with nanodisk resonators," J. of the Opt. Soci. of Korea, Vol. 16, 432, 2012.

    33. Wang, L., L. Yan, Y. Guo, K.Wen, W. Pan, and B. Luo, "Optical quasi logic based on polarization-dependent four-wave mixing in subwavelength metallic waveguides," Opt. Express, Vol. 21, 14442, 2013.

    34. Nozhat, N. and N. Granpayeh, "All-optical logic gates based on nonlinear plasmonic ring resonators," Appl. Opt., Vol. 54, 7944, 2015.

    35. Wen, J., J. Chen, K. Wang, B. Dai, Y. Hung, and D. Zhang, "Broadband plasmonic logic input sources constructed with dual square ring resonators and dual waveguides," IEEE Photon. J., Vol. 8, 4801209, 2016.

    36. Yc, Y., Y. Xic, Y. Liu, S. Wang, J. Zhang, and Y. Liu, "Design of a compact logic device based on plasmonic-induced transparency," IEEE Photon. J., Vol. 29, 647, 2016.

    37. Abdulnabi, S. H. and M. N. Abbas, "All-optical logic gates based on nanoring insulator-metalinsulator plasmonic waveguides at optical communications band," Journal of Nanophotonics, Vol. 13, No. 1, 16009, 2019.

    38. Abdulnabi, S. H. and M. N. Abbas, "Design an all-optical combinational logic circuits based on nano-ring insulator-metal-insulator plasmonic waveguides," Photonics, Vol. 6, No. 1, 30, 2019.

    39. Shekhar, P., A. Kumar, A. Ahmad, and M. Srivastava, "All optical OR/NOR logic gate using the micro-ring resonator based switching activity," International Conference on Electrical, Electronics and Computer Engineering (UPCON), 2019.

    40. Abbas, M. N. and S. H. Abdulnabi, "Plasmonic reversible logic gates," Journal of Nanophotonics, Vol. 14, No. 01, 1, 2019.

    41. Noor, S. L., K. Dens, P. Reynaert, F. Catthoor, D. Lin, P. V. Dorpe, and A. Naeemi, "Modeling and optimization of plasmonic detectors for beyond-CMOS plasmonic majority logic gates," OSA/IEEE J. of Lightwave Technol., Vol. 38, 5092, 2020.

    42. Fakhruldeen, H. F. and T. S. Mansour, "Design and simulation of plasmonic NOT gate based on insulator-metal-insulator (IMI) waveguides," Advanced Electromagnetics, Vol. 9, 91, 2020.

    43. Sederberg, S., V. Van, and A. Y. Elezzabi, "Monolithic integration of plasmonic waveguides into a complimentary metal-oxide-semiconductor- and photonic-compatible platform," Appl. Phys. Lett., Vol. 96, 121101, 2010.

    44. Choo, H., M. K. Kim, M. Staffaroni, T. J. Seok, J. Bokor, S. Cabrini, P. J. Schuck, M. C. Wu, and E. Yablonovitch, "Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper," Nat. Photonics, Vol. 6, 838-844, 2012.

    45. Kwon, M. S., J. S. Shin, S. Y. Shin, and W. G. Lee, "Characterizations of realized metal-insulator-silicon-insulator-metal waveguides and nanochannel fabrication via insulator removal," Opt. Express, Vol. 20, 21875-21887, 2012.

    46. Sullivan, D., D. Borup, and O. Gandhi, "Use of the finite-difference time-domain method in calculating EM absorption in human tissues," IEEE Trans. Biomed. Eng., Vol. 34, 148, 1987.

    47. Adhidjaja, J. and G. Horhmann, "A finite-difference algorithm for the transient electromagnetic response of a three-dimensional body," Geophysics J. Int., Vol. 98, 233, 1989.

    48. Piket-May, M. and A. Taflove, "Electrodynamics of visible-light interactions with the vertebrate retinal rod," Opt. Lett., Vol. 18, 568, 1993.

    49. Caorsi, S., A. Massa, and M. Pastorino, "Computation of electromagnetic scattering by nonlinear bounded dielectric objects: A FDTD approach," Microwave Opt. Technol. Lett., Vol. 7, 788, 1994.

    50. Tao, J., Q. J. Wang, and X. G. Huang, "All-optical plasmonic switches based on coupled nano-disk cavity structures containing nonlinear material," Plasmonics, Vol. 6, 753, 2011.