Vol. 170

Latest Volume
All Volumes
All Issues
2021-06-03

Optically Transparent Microwave Shielding Hybrid Film Composited by Metal Mesh and Graphene

By Xin-Ran Wang, Xiao-Bai Wang, Hang Ren, Nan-Shu Wu, Jing-Wen Wu, Wen-Ming Su, Yin-Long Han, and Xu Su
Progress In Electromagnetics Research, Vol. 170, 187-197, 2021
doi:10.2528/PIER21052101

Abstract

Transparent conducting materials with the ability of broadband electromagnetic shielding have a widespread range of applications in aerospace, medical equipment and electronic communications. Achieving enhanced electromagnetic shielding effect without sacrificing much optical transparency is the technical trend in both academia and industries. Here, we experimentally propose a flexible hybrid film constructed by nano-printing based metal meshes and a graphene coating for the transparent electromagnetic shielding application. Numerical analysis is carried out to investigate optimal balance between electromagnetic shielding and optical transparency. In the experiment, enhanced shielding ability of hybrid film is observed without excessively sacrificing optical transmittance, compared to the reference group (the case only with metal mesh). Our work provides a hybrid platform for the high-performance optically transparent shielding materials for electromagnetic environment safety protection.

Citation


Xin-Ran Wang, Xiao-Bai Wang, Hang Ren, Nan-Shu Wu, Jing-Wen Wu, Wen-Ming Su, Yin-Long Han, and Xu Su, "Optically Transparent Microwave Shielding Hybrid Film Composited by Metal Mesh and Graphene," Progress In Electromagnetics Research, Vol. 170, 187-197, 2021.
doi:10.2528/PIER21052101
http://test.jpier.org/PIER/pier.php?paper=21052101

References


    1. Weng, G. M., et al., "Layer-by-layer assembly of cross-functional semi-transparent MXene-Carbon nanotubes composite films for next-generation electromagnetic interference shielding," Advanced Functional Materials, Vol. 28, 1803360, 2018.
    doi:10.1002/adfm.201803360

    2. Liu, J., et al., "Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic-interference shielding," Advanced Materials, Vol. 29, 1702367, 2017.
    doi:10.1002/adma.201702367

    3. Liu, Y. S., et al., "Ultrasmooth, highly conductive and transparent PEDOT: PSS/silver nanowire composite electrode for flexible organic light-emitting devices," Organic Electronics, Vol. 31, 247, 2016.
    doi:10.1016/j.orgel.2016.01.014

    4. Bi, Y. G., et al., "Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity," Advanced Materials, Vol. 25, 6969, 2013.
    doi:10.1002/adma.201302367

    5. Hu, H. T., et al., "A transparent proximity-coupled-fed patch antenna with enhanced bandwidth and filtering response," IEEE Access, Vol. 9, 32774-32780, 2021.
    doi:10.1109/ACCESS.2021.3061203

    6. Cho, S., et al., "Large-area cross-aligned silver nanowire electrodes for flexible, transparent, and force-sensitive mechanochromic touch screens," ACS Nano, Vol. 11, 4347-4357, 2017.

    7. Lin, S., et al., "Roll-to-roll production of transparent silver-nanofiber-network electrodes for flexible electrochromic smart windows," Advanced Materials, Vol. 29, 1703238, 2017.
    doi:10.1002/adma.201703238

    8. Shen, Y., et al., "Transparent broadband metamaterial absorber enhanced by water-substrate incorporation," Optics Express, Vol. 26, 15665-15674, 2018.
    doi:10.1364/OE.26.015665

    9. Wu, Z. C., et al., "Transparent conductive carbon nanotube films," Science, Vol. 305, 1273-1276, 2004.
    doi:10.1126/science.1101243

    10. Zhang, C., et al., "Broadband metamaterial for optical transparency and microwave absorption," Applied Physics Letters, Vol. 110, 143511, 2017.
    doi:10.1063/1.4979543

    11. Lv, T. T., et al., "Switchable dual-band to broadband terahertz metamaterials absorber incorporating a VO2 phase transition," Optics Express, Vol. 29, 5437-5447, 2021.
    doi:10.1364/OE.418020

    12. Wang, H., et al., "Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding," Optics Letters, Vol. 42, 1620, 2017.
    doi:10.1364/OL.42.001620

    13. Kocifaj, M., et al., "Charge-induced electromagnetic resonances in nanoparticles," Annalen der Physik, Vol. 527, 765-769, 2015.
    doi:10.1002/andp.201500202

    14. Klacka, J., et al., "Optical signatures of electrically charged particles: Fundamental problems and solutions," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 164, 45-53, 2015.
    doi:10.1016/j.jqsrt.2015.05.009

    15. Dang, M. T., et al., "Recycling Indium Tin Oxide (ITO) electrodes used in thin-film devices with adjacent hole-transport layers of metal oxides," ACS Sustainable Chemistry & Engineering, Vol. 3, 3373-3381, 2015.
    doi:10.1021/acssuschemeng.5b01080

    16. Cairns, D. R., et al., "Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates," Applied Physics Letter, Vol. 76, 1425-1427, 2000.
    doi:10.1063/1.126052

    17. Zhang, Y. K., et al., "Solution-processed transparent electrodes for emerging thin-film solar cells," Chemical Reviews, Vol. 120, 2049-2122, 2020.
    doi:10.1021/acs.chemrev.9b00483

    18. Han, Y., et al., "Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding," Scientific Reports, Vol. 6, 25601, 2016.
    doi:10.1038/srep25601

    19. Bi, Y. G., et al., "Ultrathin metal films as the transparent electrode in ITO-free organic optoelectronic devices," Advanced Optical Materials, Vol. 7, 1800778, 2019.
    doi:10.1002/adom.201800778

    20. Lu, Z. G., et al., "Transparent multi-layer graphene/polyethylene terephthalate structures with excellent microwave absorption and electromagnetic interference shielding performance," Nanoscale, Vol. 8, 16684-16693, 2016.
    doi:10.1039/C6NR02619B

    21. Gu, J. H., et al., "Multi-layer silver nanowire/polyethylene terephylene mesh structure for highly efficient transparent electromagnetic interference shielding," Nanotechnology, Vol. 31, 185303, 2020.
    doi:10.1088/1361-6528/ab6d9d

    22. Zhu, X. Z., et al., "Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires," Nanoscale, Vol. 12, 14589-14597, 2020.
    doi:10.1039/D0NR03790G

    23. Kang, S. B., et al., "Stretchable and colorless freestanding microwire arrays for transparent solar cells with flexibility," Light: Science & Applications, Vol. 8, 121, 2019.
    doi:10.1038/s41377-019-0234-y

    24. Chen, S., et al., "Optical waveguides based on one-dimensional organic crystals," PhotoniX, Vol. 2, 2, 2021.
    doi:10.1186/s43074-021-00024-2

    25. Jiang, Z. P., et al., "Ultrathin, lightweight, and freestanding metallic mesh for transparent electromagnetic interference shielding," Optics Express, Vol. 27, 24194-24209, 2019.
    doi:10.1364/OE.27.024194

    26. Phan, D. T., et al., "Optically transparent and very thin structure against Electromagnetic Pulse (EMP) using metal mesh and saltwater for shielding windows," Scientific Reports, Vol. 11, 2603, 2021.
    doi:10.1038/s41598-021-80969-3

    27. Wang, H. Y., et al., "Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding," Optics Letters, Vol. 42, 1620-1623, 2017.
    doi:10.1364/OL.42.001620

    28. Ma, L., et al., "Transparent conducting graphene hybrid films to improve Electromagnetic Interference (EMI) shielding performance of graphene," ACS Applied Materials & Interfaces, Vol. 9, 34221-34229, 2017.
    doi:10.1021/acsami.7b09372

    29. Wen, B., et al., "Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures," Advanced Materials, Vol. 26, 3484-3489, 2014.
    doi:10.1002/adma.201400108

    30. Zou, X. J., et al., "Imaging based on metalenses," PhotoniX, Vol. 1, 2, 2020.
    doi:10.1186/s43074-020-00007-9

    31. Han, D. D., et al., "Bioinspired graphene actuators prepared by unilateral UV irradiation of graphene oxide papers," Advanced Functional Materials, Vol. 25, 4548, 2015.
    doi:10.1002/adfm.201501511

    32. Han, D. D., et al., "Light mediated manufacture and manipulation of actuators," Advanced Materials, Vol. 28, 8328, 2016.
    doi:10.1002/adma.201602211

    33. Wang, D., et al., "Determination of formation and ionization energies of charged defects in two-dimensional materials," Physical Review Letters, Vol. 114, 196801, 2015.
    doi:10.1103/PhysRevLett.114.196801

    34. Liu, Y. Q., et al., "Bioinspired soft robots based on the moisture-responsive graphene oxide," Advanced Science, 2002464, 2021.
    doi:10.1002/advs.202002464

    35. Zhang, N., et al., "Flexible and transparent graphene/silver-nanowires composite film for high electromagnetic interference shielding effectiveness," Science Bulletin, Vol. 64, 540-546, 2019.
    doi:10.1016/j.scib.2019.03.028

    36. Lee, M. S., et al., "High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures," Nano Letters, Vol. 13, No. 6, 2013.
    doi:10.1021/nl401070p

    37. Anis, B., et al., "Preparation of highly conductive, transparent, and flexible graphene/silver nanowires substrates using non-thermal laser photoreduction," Optics & Laser Technology, Vol. 103, 367-372, 2018.
    doi:10.1016/j.optlastec.2018.01.057

    38. Han, Y., et al., "High-performance hierarchical graphene/metal-mesh film for optically transparent electromagnetic interference shielding," Carbon, Vol. 115, 34-42, 2017.
    doi:10.1016/j.carbon.2016.12.092

    39. Xu, S., et al., "Cross-wavelength invisibility integrated with various invisibility tactics," Science Advances, Vol. 6, eabb3755, 2020.
    doi:10.1126/sciadv.abb3755

    40. Dong, F. Y., et al., "Solar-energy camouflage coating with varying sheet resistance," Nano Energy, Vol. 77, 105095, 2020.
    doi:10.1016/j.nanoen.2020.105095

    41. Catrysse, P. B., et al., "Nanopatterned metallic films for use as transparent conductive electrodes in optoelectronic devices," Nano Letters, Vol. 10, 2944-2949, 2010.
    doi:10.1021/nl1011239

    42. Jaroszewski, M., et al., Advanced Materials for Electromagnetic Shielding, John Wiley &Sons, Inc Press, New Jersey, 2019.

    43. Chen, X. L., et al., "Printable high-aspect ratio and high-resolution Cu grid flexible transparent conductive film with figure of merit over 80 000," Advanced Electronic Materials, Vol. 5, 1800991, 2019.
    doi:10.1002/aelm.201800991

    44. Zhao, J., et al., "An optically transparent metasurface for broadband microwave antireflection," Applied Physics Letters, Vol. 112, 073504, 2018.
    doi:10.1063/1.5018017

    45. Qin, C. Y., et al., "Electrically controllable laser frequency combs in graphene-fiber microresonators," Light: Science & Applications, Vol. 9, 185, 2020.
    doi:10.1038/s41377-020-00419-z

    46. Chen, W., et al., "Flexible, transparent, and conductive Ti3C2Tx MXene-silver nanowire films with smart acoustic sensitivity for high-performance electromagnetic interference shielding," ACS Nano, Vol. 14, 16643-16653, 2020.
    doi:10.1021/acsnano.0c01635

    47. Li, C. J., et al., "Highly efficient and reliable transparent electromagnetic interference shielding film," ACS Applied Materials & Interfaces, Vol. 10, 11941-11949, 2018.

    48. Cheng, M. J., et al., "High-performance and reliable silver nanotube networks for efficient and large-scale transparent electromagnetic interference shielding," ACS Applied Materials & Interfaces, Vol. 13, 15525-15535, 2021.

    49. Zhu, X., et al., "Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires," Nanoscale, Vol. 12, 14589-14597, 2020.
    doi:10.1039/D0NR03790G

    50. Jiang, C., et al., "Shear modulus property characterization of nanorods," Nano Letters, Vol. 13, 111-115, 2013.
    doi:10.1021/nl3036542

    51. Han, Y., et al., "Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding," Scientific Reports, Vol. 6, 25601, 2016.
    doi:10.1038/srep25601