Vol. 177

Latest Volume
All Volumes
All Issues
2023-02-13

Topological Edge Modes in One-Dimensional Photonic Artificial Structures (Invited)

By Jiajun Zheng, Zhiwei Guo, Yong Sun, Haitao Jiang, Yunhui Li, and Hong Chen
Progress In Electromagnetics Research, Vol. 177, 1-20, 2023
doi:10.2528/PIER22101202

Abstract

In recent years, topological states in photonic artificial structures have attracted great attention due to their robustness against certain disorders and perturbations. To readily understand the underlying principles, topological edge modes in one-dimensional (1D) system have been widely investigated, which bring aboutthe discovery of novel optical phenomena and devices. In this article, we review our recent advances in topological edge modes. We introduce the connection between topological orders and effective electromagnetic parameters of photonic artificial structures in band gaps, discuss experimental demonstration of robust topological modes and their potential applications in wireless power transfer, sensing and field of optics, and give a brief introduction of future opportunities in 1D topological photonics.

Citation


Jiajun Zheng, Zhiwei Guo, Yong Sun, Haitao Jiang, Yunhui Li, and Hong Chen, "Topological Edge Modes in One-Dimensional Photonic Artificial Structures (Invited)," Progress In Electromagnetics Research, Vol. 177, 1-20, 2023.
doi:10.2528/PIER22101202
http://test.jpier.org/PIER/pier.php?paper=22101202

References


    1. Hasan, M. Z. and C. L. Kane, "Colloquium: Topological insulators," Reviews of Modern Physics, Vol. 82, No. 4, 3045-3067, 2010.
    doi:10.1103/RevModPhys.82.3045

    2. Qi, X.-L. and S.-C. Zhang, "Topological insulators and superconductors," Reviews of Modern Physics, Vol. 83, No. 4, 1057-1110, 2011.
    doi:10.1103/RevModPhys.83.1057

    3. Lu, L., J. D. Joannopoulos, and M. Soljacic, "Topological photonics," Nature Photonics, Vol. 8, No. 11, 821-829, 2014.
    doi:10.1038/nphoton.2014.248

    4. Haldane, F. D. M. and S. Raghu, "Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry," Physical Review Letters, Vol. 100, No. 1, 013904, 2008.
    doi:10.1103/PhysRevLett.100.013904

    5. Wang, Z., Y. D. Chong, J. D. Joannopoulos, and M. Soljacic, "Observation of unidirectional backscattering-immune topological electromagnetic states," Nature, Vol. 461, No. 7265, 772-775, 2009.
    doi:10.1038/nature08293

    6. Hafezi, M., S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, "Imaging topological edge states in silicon photonics," Nature Photonics, Vol. 7, No. 12, 1001-1005, 2013.
    doi:10.1038/nphoton.2013.274

    7. Khanikaev, A. B., et al., "Photonic topological insulators," Nature Materials, Vol. 12, No. 3, 233-239, 2013.
    doi:10.1038/nmat3520

    8. Wu, L. H. and X. Hu, "Scheme for achieving a topological photonic crystal by using dielectric material," Physical Review Letters, Vol. 114, No. 22, 223901, 2015.
    doi:10.1103/PhysRevLett.114.223901

    9. Harari, G., M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, and M. Segev, "Topological insulator laser: Theory," Science, Vol. 359, No. 6381, eaar4003, 2018.
    doi:10.1126/science.aar4003

    10. Bandres, M. A., S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, and M. Khajavikhan, "Topological insulator laser: Experiments," Science, Vol. 359, No. 5381, eaar4005, 2018.
    doi:10.1126/science.aar4005

    11. Rechtsman, M. C., et al., "Photonic Floquet topological insulators," Nature, Vol. 496, No. 7444, 196-200, 2013.
    doi:10.1038/nature12066

    12. Lin, H. and L. Lu, "Dirac-vortex topological photonic crystal fibre," Light: Science & Applications, Vol. 9, No. 1, 202, 2020.
    doi:10.1038/s41377-020-00432-2

    13. Joannopoulos, J. D., S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light, 2nd Ed., Princeton University Press, 2008.

    14. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Physical Review Letters, Vol. 58, No. 20, 2059-2062, 1987.
    doi:10.1103/PhysRevLett.58.2059

    15. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Physical Review Letters, Vol. 58, No. 23, 2486-2489, 1987.
    doi:10.1103/PhysRevLett.58.2486

    16. Zhu, W., X. Fang, D. Li, Y. Sun, Y. Li, Y. Jing, and H. Chen, "Simultaneous observation of a topological edge state and exceptional point in an open and non-Hermitian acoustic system," Physical Review Letters, Vol. 121, No. 12, 124501, 2018.
    doi:10.1103/PhysRevLett.121.124501

    17. Zhu, S. and X. Zhang, "Metamaterials: Artificial materials beyond nature," National Science Review, Vol. 5, No. 2, 131-131, 2018.
    doi:10.1093/nsr/nwy026

    18. Pendry, J. B., "Negative refraction makes a perfect lens," Physical Review Letters, Vol. 85, No. 18, 3966-3969, 2000.
    doi:10.1103/PhysRevLett.85.3966

    19. Ahn, D., J. Park, C. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, No. 1, 86-93, 2001.
    doi:10.1109/22.899965

    20. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, No. 5781, 1780-1782, 2006.
    doi:10.1126/science.1125907

    21. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
    doi:10.1126/science.1133628

    22. Fang, N., H. Lee, C. Sun, and X. Zhang, "Sub-diffraction-limited optical imaging with a silver superlens," Science, Vol. 308, No. 5721, 534-537, 2005.
    doi:10.1126/science.1108759

    23. Cui, T. J., M. Q. Qi, X.Wan, J. Zhao, and Q. Cheng, "Coding metamaterials, digital metamaterials and programmable metamaterials," Light: Science & Applications, Vol. 3, e218, 2014.
    doi:10.1038/lsa.2014.99

    24. Liu, W., Z. N. Chen, and X. Qing, "Metamaterial-based low-profile broadband mushroom antenna," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 3, 1165-1172, 2014.
    doi:10.1109/TAP.2013.2293788

    25. Hao, J., Y. Yuan, L. Ran, T. Jiang, J. A. Kong, C. T. Chan, and L. Zhou, "Manipulating electromagnetic wave polarizations by anisotropic metamaterials," Physical Review Letters, Vol. 99, No. 6, 063908, 2007.
    doi:10.1103/PhysRevLett.99.063908

    26. Cai, T., et al., "High-efficiency and full-space manipulation of electromagnetic wave fronts with metasurfaces," Physical Review Applied, Vol. 8, No. 3, 034033, 2017.
    doi:10.1103/PhysRevApplied.8.034033

    27. Su, W. P., J. R. Schrieffer, and A. J. Heeger, "Solitons in polyacetylene," Physical Review Letters, Vol. 42, No. 25, 1698-1701, 1979.
    doi:10.1103/PhysRevLett.42.1698

    28. Malkova, N., I. Hromada, X. Wang, G. Bryant, and Z. Chen, "Observation of optical Shockley-like surface states in photonic superlattices," Optics Letters, Vol. 34, No. 11, 1633-1635, 2009.
    doi:10.1364/OL.34.001633

    29. Tan, W., Y. Sun, H. Chen, and S.-Q. Shen, "Photonic simulation of topological excitations in metamaterials," Scientific Reports, Vol. 4, 3842, 2014.
    doi:10.1038/srep03842

    30. Poshakinskiy, A. V., A. N. Poddubny, L. Pilozzi, and E. L. Ivchenko, "Radiative topological states in resonant photonic crystals," Physical Review Letters, Vol. 112, No. 10, 107403, 2014.
    doi:10.1103/PhysRevLett.112.107403

    31. Xiao, M., Z. Q. Zhang, and C. T. Chan, "Surface impedance and bulk band geometric phases in one-dimensional systems," Physical Review X, Vol. 4, No. 2, 021017, 2014.
    doi:10.1103/PhysRevX.4.021017

    32. Poddubny, A., A. Miroshnichenko, A. Slobozhanyuk, and Y. Kivshar, "Topological Majorana states in zigzag chains of plasmonic nanoparticles," ACS Photonics, Vol. 1, No. 2, 101-105, 2014.
    doi:10.1021/ph4000949

    33. Ling, C. W., M. Xiao, S. F. Yu, and K. H. Fung, "Topological edge plasmon modes between diatomic chains of nanoparticles," Optics Express, Vol. 23, No. 3, 2021-2031, 2015.
    doi:10.1364/OE.23.002021

    34. Poli, C., M. Bellec, U. Kuhl, F. Mortessagne, and H. Schomerus, "Selective enhancement of topologically induced interface states," Nature Communications, Vol. 6, 6710, 2015.
    doi:10.1038/ncomms7710

    35. Shen, S. Q., Topological Insulators: Dirac Equation in Condensed Matter, 2nd Ed., Springer, 2017.
    doi:10.1007/978-981-10-4606-3

    36. Guan, G., H. Jiang, H. Li, Y. Zhang, H. Chen, and S. Y. Zhu, "Tunneling modes of photonic heterostructures consisting of single-negative materials," Applied Physics Letters, Vol. 88, No. 21, 211112, 2006.
    doi:10.1063/1.2207218

    37. Guo, J., H. Chen, H. Li, and Y. Zhang, "Effective permittivity and permeability of one dimensional dielectric photonic crystal within a band gap," Chinese Physics B, Vol. 17, No. 7, 2544-2552, 2008.
    doi:10.1088/1674-1056/17/7/034

    38. Shi, X., C. Xue, H. Jiang, and H. Chen, "Topological description for gaps of one-dimensional symmetric all-dielectric photonic crystals," Optics Express, Vol. 24, No. 16, 18580-18581, 2016.
    doi:10.1364/OE.24.018580

    39. Huang, Q., Z. Guo, J. Feng, C. Yu, H. Jiang, Z. Zhang, Z. Wang, and H. Chen, "Observation of a topological edge state in the X-ray band," Laser & Photonics Reviews, Vol. 13, No. 6, 1800339, 2019.
    doi:10.1002/lpor.201800339

    40. Wang, Q., M. Xiao, H. Liu, S. N. Zhu, and C. T. Chan, "Measurement of the Zak phase of photonic bands through the interface states of a metasurface/photonic crystal," Physical Review B, Vol. 93, No. 4, 041415, 2016.
    doi:10.1103/PhysRevB.93.041415

    41. Lemoult, F., N. Kaina, M. Fink, G. Lerosey, and , "Wave propagation control at the deep subwavelength scale in metamaterials," Nature Physics, Vol. 9, No. 1, 55-60, 2013.
    doi:10.1038/nphys2480

    42. Fan, L., W. W. Yu, S. Y. Zhang, H. Zhang, and J. Ding, "Zak phases and band properties in acoustic metamaterials with negative modulus or negative density," Physical Review B, Vol. 94, No. 17, 174307, 2016.
    doi:10.1103/PhysRevB.94.174307

    43. Zhu, W., Y.-Q. Ding, J. Ren, Y. Sun, Y. Li, H. Jiang, and H. Chen, "Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials," Physical Review B, Vol. 97, No. 19, 195307, 2018.
    doi:10.1103/PhysRevB.97.195307

    44. Fan, C., X. Shi, F. Wu, Y. Li, H. Jiang, Y. Sun, and H. Chen, "Photonic topological transition in dimerized chains with the joint modulation of near-field and far-field couplings," Photonics Research, Vol. 10, No. 1, 41-49, 2022.
    doi:10.1364/PRJ.441278

    45. Verbin, M., O. Zilberberg, Y. E. Kraus, Y. Lahini, and Y. Silberberg, "Observation of topological phase transitions in photonic quasicrystals," Physical Review Letters, Vol. 110, No. 7, 076403, 2013.
    doi:10.1103/PhysRevLett.110.076403

    46. Lang, L., X. Cai, and S. Chen, "Edge states and topological phases in one-dimensional optical superlattices," Physical Review Letters, Vol. 108, No. 21, 220401, 2012.
    doi:10.1103/PhysRevLett.108.220401

    47. Kraus, Y. E., Y. Lahini, Z. Ringel, M. Verbin, and O. Zilberberg, "Topological states and adiabatic pumping in quasicrystals," Physical Review Letters, Vol. 109, No. 10, 106402, 2012.
    doi:10.1103/PhysRevLett.109.106402

    48. Feng, L., Y.-L. Xu, W. S. Fegadolli, M.-H. Lu, J. E. B. Oliveira, V. R. Almeida, Y.-F. Chen, and A. Scherer, "Experimental demonstration of a unidirectional reflectionless parity-time metamaterial at optical frequencies," Nature Materials, Vol. 12, No. 2, 108-113, 2013.
    doi:10.1038/nmat3495

    49. Shi, X., Y. Sun, C. Xue, and X. Hu, "Prediction of interface states in liquid surface waves with one-dimensional modulation," Physics Letters A, Vol. 383, No. 17, 2106-2109, 2019.
    doi:10.1016/j.physleta.2019.04.002

    50. Zhang, D., J. Ren, T. Zhou, and B. Li, "Dark state, zero-index and topology in phononic metamaterials with negative mass and negative coupling," New Journal of Physics, Vol. 21, 093033, 2019.
    doi:10.1088/1367-2630/ab3f6d

    51. Jiang, J., Z. W. Guo, Y. Q. Ding, Y. Sun, Y. H. Li, H. T. Jiang, and H. Chen, "Experimental demonstration of the robust edge states in a split-ring-resonator chain," Optics Express, Vol. 26, No. 10, 12891-12902, 2018.
    doi:10.1364/OE.26.012891

    52. Bellec, M., U. Kuhl, G. Montambaux, and F. Mortessagne, "Tight-binding couplings in microwave artificial graphene," Physical Review B, Vol. 88, No. 11, 115437, 2013.
    doi:10.1103/PhysRevB.88.115437

    53. Atala, M., M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch, "Direct measurement of the Zak phase in topological Bloch bands," Nature Physics, Vol. 9, No. 12, 795-800, 2013.
    doi:10.1038/nphys2790

    54. Xiao, M., G. Ma, Z. Yang, P. Sheng, Z. Q. Zhang, and C. T. Chan, "Geometric phase and band inversion in periodic acoustic systems," Nature Physics, Vol. 11, No. 3, 240-244, 2015.
    doi:10.1038/nphys3228

    55. Jiang, J., J. Ren, Z. W. Guo, W. W. Zhu, Y. Long, H. T. Jiang, and H. Chen, "Seeing topological winding number and band inversion in photonic dimer chain of split-ring resonators," Physical Review B, Vol. 101, No. 16, 165427, 2020.
    doi:10.1103/PhysRevB.101.165427

    56. Ashcroft, N. W. and N. D. Mermin, Solid State Physics, Saunders College Publishing, 1976.

    57. Guo, Z. W., J. Jiang, H. T. Jiang, J. Ren, and H. Chen, "Observation of topological bound states in a double Su-Schrieffer-Heeger chain composed of split ring resonators," Physical Review Research, Vol. 3, No. 1, 013122, 2021.
    doi:10.1103/PhysRevResearch.3.013122

    58. Guo, Z. W., H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, "Asymmetric topological edge states in a quasiperiodic Harper chain composed of split-ring resonators," Optics Letters, Vol. 43, No. 20, 5142-5145, 2018.
    doi:10.1364/OL.43.005142

    59. Hafezi, M., E. A. Delmer, M. D. Lukin, and J. M. Taylor, "Robust optical delay lines with topological protection," Nature Physics, Vol. 7, No. 11, 907-912, 2011.
    doi:10.1038/nphys2063

    60. Song, J., F. Yang, Z. Guo, X.Wu, K. Zhu, J. Jiang, Y. Sun, Y. Li, H. Jiang, and H. Chen, "Wireless power transfer via topological modes in dimer chains," Physical Review Applied, Vol. 15, No. 1, 014009, 2021.
    doi:10.1103/PhysRevApplied.15.014009

    61. Zhang, L., et al., "Demonstration of topological wireless power transfer," Science Bulletin, Vol. 66, No. 10, 974-980, 2021.
    doi:10.1016/j.scib.2021.01.028

    62. Zeng, C., Y. Sun, G. Li, Y. Li, H. Jiang, Y. Yang, and H. Chen, "Enhanced sensitivity at high-order exceptional points in a passive wireless sensing system," Optics Express, Vol. 27, No. 20, 27562-27572, 2019.
    doi:10.1364/OE.27.027562

    63. Yang, F., et al., "Actively controlled asymmetric edge states for directional wireless power transfer," Optics Express, Vol. 29, No. 5, 7844-7857, 2021.
    doi:10.1364/OE.417887

    64. Hodaei, H., A. U. Hassan, S. Wittek, H. Garcia-Gracia, R. El-Ganainy, D. N. Christodoulides, and M. Khajavikhan, "Enhanced sensitivity at higher-order exceptional points," Nature, Vol. 548, No. 7666, 187-191, 2017.
    doi:10.1038/nature23280

    65. Chen, W. J., S. K. Ozdemir, G. M. Zhao, J. Wiersig, and L. Yang, "Exceptional points enhance sensing in an optical microcavity," Nature, Vol. 548, No. 7666, 192-196, 2017.
    doi:10.1038/nature23281

    66. Chen, P. Y. and R. El-Ganainy, "Exceptional points enhance wireless readout," Nature Electronics, Vol. 2, 323-324, 2019.
    doi:10.1038/s41928-019-0293-3

    67. Guo, Z. W., T. Zhang, J. Song, H. Jiang, and H. Chen, "Sensitivity of topological edge states in a non-Hermitian dimer chain," Photonics Research, Vol. 9, No. 4, 574-582, 2021.
    doi:10.1364/PRJ.413873

    68. Wu, J., F. Wu, K. Lv, Z. Guo, H. Jiang, Y. Sun, Y. Li, and H. Chen, "Giant Goos-Hanchen shift with a high reflectance assisted by interface states in photonic heterostructures," Physical Review A, Vol. 101, No. 5, 053838, 2020.
    doi:10.1103/PhysRevA.101.053838

    69. Wang, Q., M. Xiao, H. Liu, S. Zhu, and C. T. Chan, "Optical interface states protected by synthetic weyl points," Physical Review X, Vol. 7, No. 3, 031032, 2017.
    doi:10.1103/PhysRevX.7.031032

    70. Dong, L., H. Jiang, H. Chen, and Y. Shi, "Enhancement of Faraday rotation effect in heterostructures with magneto-optical metals," Journal of Applied Physics, Vol. 107, No. 9, 093101, 2010.
    doi:10.1063/1.3406152

    71. Du, G., H. Jiang, Z. Wang, and H. Chen, "Optical nonlinearity enhancement in heterostructures with thick metallic film and truncated photonic crystals," Optics Letters, Vol. 34, No. 5, 578-580, 2009.
    doi:10.1364/OL.34.000578

    72. Bergholtz, E. J., J. C. Budich, and F. K. Kunst, "Exceptional topology of non-Hermitian systems," Review of Modern Physics, Vol. 93, No. 1, 015005, 2021.
    doi:10.1103/RevModPhys.93.015005

    73. Yao, S. Y. and Z. Wang, "Edge states and topological invariants of non-Hermitian systems," Physical Review Letters, Vol. 121, No. 8, 086803, 2018.
    doi:10.1103/PhysRevLett.121.086803

    74. Lee, T. E., "Anomalous edge state in a non-Hermitian lattice," Physical Review Letters, Vol. 116, No. 13, 133903, 2016.
    doi:10.1103/PhysRevLett.116.133903

    75. Xiong, Y., "Why does bulk boundary correspondence fail in some non-Hermitian topological models," Journal of Physics Communications, Vol. 2, No. 3, 035043, 2018.
    doi:10.1088/2399-6528/aab64a

    76. Helbig, T., et al., "Generalized bulk-boundary correspondence in non-Hermitian topolectrical circuits," Nature Physics, Vol. 16, No. 7, 747, 2020.
    doi:10.1038/s41567-020-0922-9

    77. Okuma, N. and M. Sato, "Hermitian zero modes protected by nonnormality: Application of pseudospectra," Physical Review B, Vol. 102, No. 1, 014203, 2020.
    doi:10.1103/PhysRevB.102.014203

    78. Budich, J. C. and E. J. Bergholtz, "Non-Hermitian topological sensors," Physical Review Letters, Vol. 125, No. 18, 180403, 2020.
    doi:10.1103/PhysRevLett.125.180403

    79. Li, J., R. Chu, J. Jain, and S.-Q. Shen, "Topological anderson insulator," Physical Review Letters, Vol. 102, No. 13, 136806, 2009.
    doi:10.1103/PhysRevLett.102.136806

    80. Zhang, Z., B. Wu, J. Song, and H. Jiang, "Topological anderson insulator in electric circuits," Physical Review B, Vol. 100, No. 18, 184202, 2019.
    doi:10.1103/PhysRevB.100.184202

    81. Stutzer, S., et al., "Photonic topological Anderson insulators," Nature, Vol. 560, 461-465, 2018.
    doi:10.1038/s41586-018-0418-2

    82. Liu, G., e al., "Topological Anderson insulator in disordered photonic crystals," Physical Review Letters, Vol. 125, No. 13, 133603, 2020.
    doi:10.1103/PhysRevLett.125.133603

    83. Meier, E. J., F. A. An, A. Dauphin, M. Maffei, P. Massignan, T. L. Hughes, and B. Gadway, "Observation of the topological Anderson insulator in disordered atomic wires," Science, Vol. 362, 929, 2018.
    doi:10.1126/science.aat3406

    84. Lin, Q., T. Lin, L. Xiao, K. Wang, W. Yi, and P. Xue, "Observation of non-Hermitian topological Anderson insulator in quantum dynamics," Nature Communications, Vol. 13, 3229, 2022.
    doi:10.1038/s41467-022-30938-9