Vol. 177

Latest Volume
All Volumes
All Issues

Highly Sensitive Temperature Sensing via Photonic Spin Hall Effect

By Shuaijie Yuan, Jin Yang, Yong Wang, Yu Chen, and Xinxing Zhou
Progress In Electromagnetics Research, Vol. 177, 21-32, 2023


In this work, we propose a highly sensitive temperature sensor based on photonic spin Hall effect (PSHE). We find that, by involving the liquid crystal (LC) material, the spin spatial and angular shifts in PSHE are very sensitive to the tiny perturbation of temperature when the incident angle of light beam is near the Brewster and critical angles. Importantly, the phase transition from liquid crystal state to liquid state across the clearing point (CP) will lead to the transition of strong spin-orbit interaction to the weak one. During this process, we reveal that the sensitivity of our designed temperature sensor can reach a giant value with 8.27 cm/K which is one order of magnitude improvement compared with the previous Goos-Hänchen effect-based temperature sensor. This work provides an effective method for precisely determining the position of CP and actively manipulating the spin-orbit interaction.


Shuaijie Yuan, Jin Yang, Yong Wang, Yu Chen, and Xinxing Zhou, "Highly Sensitive Temperature Sensing via Photonic Spin Hall Effect," Progress In Electromagnetics Research, Vol. 177, 21-32, 2023.


    1. Wade, S. A., S. F. Collins, and G. W. Baxter, "Fluorescence intensity ratio technique for optical fiber point temperature sensing," J. Appl. Phys., Vol. 94, 4743-4756, 2003.

    2. Li, E., X. Wang, and C. Zhang, "Fiber-optic temperature sensor based on interference of selective higher-order modes," Appl. Phys. Lett., Vol. 89, 091119, 2006.

    3. Choi, H. Y., K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, "Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer," Opt. Lett., Vol. 33, 2455-2457, 2008.

    4. Ramakrishnan, M., G. Rajan, Y. Semenova, and G. Farrell, "Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials," Sensors, Vol. 16, 99, 2016.

    5. Perez-Garcia, G. F., J. L. Camas-Anzueto, G. Anzueto-Sanchez, M. Perez-Patricio, and F. R. Lopez-Estrada, "Demonstration of improving the sensitivity of a fiber optic temperature sensor using the wavelength of maximum absorption of the lophine," Measurement, Vol. 187, 110378, 2022.

    6. Song, E., et al., "Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor," Nat. Commun., Vol. 13, 1-9, 2022.

    7. Moreira, M. F., et al., "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett., Vol. 85, 2691-2693, 2004.

    8. Zhao, L., et al., "Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor," Opt. Commun., Vol. 402, 181-185, 2017.

    9. Wang, F., Y. Liu, Y. Lu, L. Zhang, J. Ma, L. Wang, and W. Sun, "High-sensitivity Fabry-Perot interferometer temperature sensor probe based on liquid crystal and the Vernier effect," Opt. Lett., Vol. 43, 5355-5358, 2018.

    10. Chiang, L. Y., C. T. Wang, T. S. Lin, S. Pappert, and P. Yu, "Highly sensitive silicon photonic temperature sensor based on liquid crystal filled slot waveguide directional coupler," Opt. Express, Vol. 28, 29345-29356, 2020.

    11. Chen, C., et al., "Optical temperature sensing based on the Goos-Hanchen effect," Appl. Opt., Vol. 46, 5347-5351, 2007.

    12. Tang, T., C. Li, L. Luo, Y. Zhang, and Q. Yuan, "Thermo-optic Imbert-Fedorov effect in a prism- waveguide coupling system with silicon-on-insulator," Opt. Commun., Vol. 370, 49-54, 2016.

    13. Turhan-Sayan, G., "Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor," J. Lightwave Technol., Vol. 21, 805, 2003.

    14. Chen, C. W., H. P. Chiang, D. P. Tsai, and P. T. Leung, "Temperature dependence of the surface- plasmon-induced Goos-Hanchen shifts," Appl. Phys. B, Vol. 107, 111-118, 2012.

    15. Xu, Y., L. Wu, and L. K. Ang, "Ultrasensitive optical temperature transducers based on surface plasmon resonance enhanced composited Goos-Hanchen and Imbert-Fedorov shifts," IEEE J. Sel. Top. Quantum Electron., Vol. 27, 1-8, 2021.

    16. Onoda, M., S. Murakami, and N. Nagaosa, "Hall effect of light," Phys. Rev. Lett., Vol. 93, 083901, 2004.

    17. Bliokh, K. Y. and Y. P. Bliokh, "Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet," Phys. Rev. Lett., Vol. 96, 073903, 2006.

    18. Hosten, O. and P. Kwiat, "Observation of the spin Hall effect of light via weak measurements," Science, Vol. 319, 787-790, 2008.

    19. Bliokh, K. Y., A. Niv, V. Kleiner, and E. Hasman, "Geometrodynamics of spinning light," Nat. Photon., Vol. 2, 748, 2008.

    20. Qin, Y., Y. Li, H. He, and Q. Gong, "Measurement of spin Hall effect of reflected light," Opt. Lett., Vol. 34, 2551, 2009.

    21. Ling, X., X. Zhou, K. Huang, and Y. Liu, "Recent advances in the spin Hall effect of light," Rep. Prog. Phys., Vol. 80, 066401, 2017.

    22. Kim, M., D. Lee, and J. Rho, "Spin Hall effect: Spin Hall effect under arbitrarily polarized or unpolarized light," Laser Photonics Rev., Vol. 15, 7, 2021.

    23. Petersen, J., J. Volz, and A. Rauschenbeutel, "Chiral nanophotonic waveguide interface based on spin-orbit interaction of light," Science, Vol. 34, 67-71, 2014.

    24. Bliokh, K. Y., F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, "Spin-orbit interactions of light," Nat. Photon., Vol. 9, 796, 2015.

    25. Cardano, F. and L. Marrucci, "Spin-orbit photonics," Nat. Photon., Vol. 9, 776, 2015.

    26. Shao, Z., J. Zhu, Y. Chen, Y. Zhang, and S. Yu, "Spin-orbit interaction of light induced by transverse spin angular momentum engineering," Nat. Commun., Vol. 9, 1-11, 2018.

    27. Fu, S., C. Guo, G. Liu, Y. Li, H. Yin, Z. Li, and Z. Chen, "Spin-orbit optical Hall effect," Phys. Rev. Lett., Vol. 123, 243904, 2019.

    28. Fang, L., H. Wang, Y. Liang, H. Cao, and J. Wang, "Spin-orbit mapping of light," Phys. Rev. Lett., Vol. 127, 233901, 2021.

    29. Chi, C., Q. Jiang, Z. Liu, L. Zheng, M. Jiang, H. Zhang, F. Lin, B. Shen, and Z. Fang, "Selectively steering photon spin angular momentum via electron-induced optical spin Hall effect," Sci. Adv., Vol. 7, eabf8011, 2021.

    30. Zhou, X., Z. Xiao, H. Luo, and S. Wen, "Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements," Phys. Rev. A, Vol. 85, 043809, 2012.

    31. Mi, C., S. Chen, X. Zhou, K. Tian, H. Luo, and S. Wen, "Observation of tiny polarization rotation rate in total internal reflection via weak measurements," Photonics Res., Vol. 5, 92-96, 2017.

    32. Wang, B., K. Rong, E. Maguid, V. Kleiner, and E. Hasman, "Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin Hall effect," Nat. Nanotechnol., Vol. 15, 450-456, 2020.

    33. Wang, R., et al., "Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect," Apl. Photonics, Vol. 5, 016105, 2020.

    34. Li, S., Z. Chen, L. Xie, Q. Liao, X. Zhou, Y. Chen, and X. Lin, "Weak measurements of the waist of an arbitrarily polarized beam via in-plane spin splitting," Opt. Express, Vol. 29, 8777-8785, 2021.

    35. Zhou, X., L. Sheng, and X. Ling, "Photonic spin Hall effect enabled refractive index sensor using weak measurements," Sci. Rep., Vol. 8, 1-8, 2018.

    36. Zhu, W., et al., "Black phosphorus terahertz sensing based on photonic spin Hall effect," Opt. Express, Vol. 28, 25869-25878, 2020.

    37. Nie, P., L. Sheng, L. Xie, Z. Chen, X. Zhou, Y. Chen, and X. Lin, "Gas sensing near exceptional points," J. Phys. D, Vol. 54, 254001, 2021.

    38. Liu, S., X. Yin, and H. Zhao, "Dual-function photonic spin Hall effect sensor for high-precision refractive index sensing and graphene layer detection," Opt. Express, Vol. 30, 31925-31936, 2022.

    39. Zhou, J., H. Qian, G. Hu, H. Luo, S. Wen, and Z. Liu, "Broadband photonic spin Hall meta-lens," ACS Nano, Vol. 12, 82-88, 2018.

    40. Du, L., et al., "On-chip photonic spin Hall lens," ACS Photonics, Vol. 6, 1840-1847, 2019.

    41. Jin, R., L. Tang, J. Li, J. Wang, Q. Wang, Y. Liu, and Z. G. Dong, "Experimental demonstration of multidimensional and multifunctional metalenses based on photonic spin hall effect," ACS Photonics, Vol. 7, 512-518, 2020.

    42. Xie, Z., T. Lei, H. Qiu, Z. Zhang, H. Wang, and X. Yuan, "Broadband on-chip photonic spin Hall element via inverse design," Photonics Res., Vol. 8, 121-126, 2020.

    43. He, A., Y. Xu, B. Gao, T. Zhang, and J. Zhang, "Subwavelength broadband photonic spin hall devices via optical slot antennas," Laser Photonics Rev., Vol. 15, 2000460, 2021.

    44. Lei, T., et al., "On-chip high-speed coherent optical signal detection based on photonic spin-Hall effect," Laser Photonics Rev., Vol. 16, 2100669, 2022.

    45. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1962.

    46. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, MA, 2008.

    47. Vuks, M. F., "Determination of the optical anisotropy of aromatic molecules from the double refraction of crystals," Opt. Spectrosc., Vol. 20, 361, 1966.

    48. Li, J. and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys., Vol. 95, 896-901, 2004.

    49. Li, J., S. Gauza, and S. T. Wu, "Temperature effect on liquid crystal refractive indices," J. Appl. Phys., Vol. 96, 19-24, 2004.

    50. Wu, S. T., "Birefringence dispersions of liquid crystals," Phys. Rev. A, Vol. 33, 1270, 1986.

    51. Haller, I., "Thermodynamic and static properties of liquid crystals," Prog. Solid State Chem., Vol. 10, 103-118, 1975.

    52. Li, J., S. Gauzia, and S. T. Wu, "High temperature-gradient refractive index liquid crystals," Opt. Express, Vol. 12, 2002-2010, 2004.

    53. Luo, H., W. Hu, X. Yi, H. Liu, and J. Zhu, "Amphoteric refraction at the interface between isotropic and anisotropic media," Opt. Commun., Vol. 254, 353-360, 2005.

    54. Shah, S., X. Lin, L. Shen, M. Renuka, B. Zhang, and H. Chen, "Interferenceless polarization splitting through nanoscale van der Waals heterostructures," Phys. Rev. Appl., Vol. 10, 034025, 2018.

    55. Aiello, A., M. Merano, and J. P. Woerdman, "Duality between spatial and angular shift in optical reflection," Phys. Rev. A, Vol. 80, 061801, 2009.

    56. Zhou, X., L. Xie, X. Ling, S. Cheng, Z. Zhang, H. Luo, and H. Sun, "Large in-plane asymmetric spin angular shifts of a light beam near the critical angle," Opt. Lett., Vol. 44, 207-210, 2019.

    57. Ling, X., et al., "Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence," Light: Sci. Appl., Vol. 4, e290, 2015.

    58. Ling, X., et al., "Topology-induced phase transitions in spin-orbit photonics," Laser Photonics Rev., Vol. 15, 2000492, 2021.

    59. Ling, X., W. Xiao, S. Chen, X. Zhou, H. Luo, and L. Zhou, "Revisiting the anomalous spin-Hall effect of light near the Brewster angle," Phys. Rev. A, Vol. 103, 033515, 2021.

    60. Mazanov, M., O. Yermakov, A. Bogdanov, and A. Lavrinenko, "On anomalous optical beam shifts at near-normal incidence," APL Photonics, Vol. 7, 101301, 2022.

    61. Neugebauer, M., S. Nechayev, M. Vorndran, G. Leuchs, and P. Banzer, "Weak measurement enhanced spin Hall effect of light for particle displacement sensing," Nano Lett., Vol. 19, 422, 2019.