Vol. 177

Latest Volume
All Volumes
All Issues
2023-03-23

Highly Sensitive Temperature Sensing via Photonic Spin Hall Effect

By Shuaijie Yuan, Jin Yang, Yong Wang, Yu Chen, and Xinxing Zhou
Progress In Electromagnetics Research, Vol. 177, 21-32, 2023
doi:10.2528/PIER23012902

Abstract

In this work, we propose a highly sensitive temperature sensor based on photonic spin Hall effect (PSHE). We find that, by involving the liquid crystal (LC) material, the spin spatial and angular shifts in PSHE are very sensitive to the tiny perturbation of temperature when the incident angle of light beam is near the Brewster and critical angles. Importantly, the phase transition from liquid crystal state to liquid state across the clearing point (CP) will lead to the transition of strong spin-orbit interaction to the weak one. During this process, we reveal that the sensitivity of our designed temperature sensor can reach a giant value with 8.27 cm/K which is one order of magnitude improvement compared with the previous Goos-Hänchen effect-based temperature sensor. This work provides an effective method for precisely determining the position of CP and actively manipulating the spin-orbit interaction.

Citation


Shuaijie Yuan, Jin Yang, Yong Wang, Yu Chen, and Xinxing Zhou, "Highly Sensitive Temperature Sensing via Photonic Spin Hall Effect," Progress In Electromagnetics Research, Vol. 177, 21-32, 2023.
doi:10.2528/PIER23012902
http://test.jpier.org/PIER/pier.php?paper=23012902

References


    1. Wade, S. A., S. F. Collins, and G. W. Baxter, "Fluorescence intensity ratio technique for optical fiber point temperature sensing," J. Appl. Phys., Vol. 94, 4743-4756, 2003.
    doi:10.1063/1.1606526

    2. Li, E., X. Wang, and C. Zhang, "Fiber-optic temperature sensor based on interference of selective higher-order modes," Appl. Phys. Lett., Vol. 89, 091119, 2006.
    doi:10.1063/1.2344835

    3. Choi, H. Y., K. S. Park, S. J. Park, U. C. Paek, B. H. Lee, and E. S. Choi, "Miniature fiber-optic high temperature sensor based on a hybrid structured Fabry-Perot interferometer," Opt. Lett., Vol. 33, 2455-2457, 2008.
    doi:10.1364/OL.33.002455

    4. Ramakrishnan, M., G. Rajan, Y. Semenova, and G. Farrell, "Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials," Sensors, Vol. 16, 99, 2016.
    doi:10.3390/s16010099

    5. Perez-Garcia, G. F., J. L. Camas-Anzueto, G. Anzueto-Sanchez, M. Perez-Patricio, and F. R. Lopez-Estrada, "Demonstration of improving the sensitivity of a fiber optic temperature sensor using the wavelength of maximum absorption of the lophine," Measurement, Vol. 187, 110378, 2022.
    doi:10.1016/j.measurement.2021.110378

    6. Song, E., et al., "Mn2+-activated dual-wavelength emitting materials toward wearable optical fibre temperature sensor," Nat. Commun., Vol. 13, 1-9, 2022.

    7. Moreira, M. F., et al., "Cholesteric liquid-crystal laser as an optic fiber-based temperature sensor," Appl. Phys. Lett., Vol. 85, 2691-2693, 2004.
    doi:10.1063/1.1781363

    8. Zhao, L., et al., "Whispering gallery mode laser based on cholesteric liquid crystal microdroplets as temperature sensor," Opt. Commun., Vol. 402, 181-185, 2017.
    doi:10.1016/j.optcom.2017.06.008

    9. Wang, F., Y. Liu, Y. Lu, L. Zhang, J. Ma, L. Wang, and W. Sun, "High-sensitivity Fabry-Perot interferometer temperature sensor probe based on liquid crystal and the Vernier effect," Opt. Lett., Vol. 43, 5355-5358, 2018.
    doi:10.1364/OL.43.005355

    10. Chiang, L. Y., C. T. Wang, T. S. Lin, S. Pappert, and P. Yu, "Highly sensitive silicon photonic temperature sensor based on liquid crystal filled slot waveguide directional coupler," Opt. Express, Vol. 28, 29345-29356, 2020.
    doi:10.1364/OE.403710

    11. Chen, C., et al., "Optical temperature sensing based on the Goos-Hanchen effect," Appl. Opt., Vol. 46, 5347-5351, 2007.
    doi:10.1364/AO.46.005347

    12. Tang, T., C. Li, L. Luo, Y. Zhang, and Q. Yuan, "Thermo-optic Imbert-Fedorov effect in a prism- waveguide coupling system with silicon-on-insulator," Opt. Commun., Vol. 370, 49-54, 2016.
    doi:10.1016/j.optcom.2016.03.005

    13. Turhan-Sayan, G., "Temperature effects on surface plasmon resonance: Design considerations for an optical temperature sensor," J. Lightwave Technol., Vol. 21, 805, 2003.
    doi:10.1109/JLT.2003.809552

    14. Chen, C. W., H. P. Chiang, D. P. Tsai, and P. T. Leung, "Temperature dependence of the surface- plasmon-induced Goos-Hanchen shifts," Appl. Phys. B, Vol. 107, 111-118, 2012.
    doi:10.1007/s00340-011-4756-0

    15. Xu, Y., L. Wu, and L. K. Ang, "Ultrasensitive optical temperature transducers based on surface plasmon resonance enhanced composited Goos-Hanchen and Imbert-Fedorov shifts," IEEE J. Sel. Top. Quantum Electron., Vol. 27, 1-8, 2021.
    doi:10.1109/JSTQE.2021.3093212

    16. Onoda, M., S. Murakami, and N. Nagaosa, "Hall effect of light," Phys. Rev. Lett., Vol. 93, 083901, 2004.
    doi:10.1103/PhysRevLett.93.083901

    17. Bliokh, K. Y. and Y. P. Bliokh, "Conservation of angular momentum, transverse shift, and spin Hall effect in reflection and refraction of an electromagnetic wave packet," Phys. Rev. Lett., Vol. 96, 073903, 2006.
    doi:10.1103/PhysRevLett.96.073903

    18. Hosten, O. and P. Kwiat, "Observation of the spin Hall effect of light via weak measurements," Science, Vol. 319, 787-790, 2008.
    doi:10.1126/science.1152697

    19. Bliokh, K. Y., A. Niv, V. Kleiner, and E. Hasman, "Geometrodynamics of spinning light," Nat. Photon., Vol. 2, 748, 2008.
    doi:10.1038/nphoton.2008.229

    20. Qin, Y., Y. Li, H. He, and Q. Gong, "Measurement of spin Hall effect of reflected light," Opt. Lett., Vol. 34, 2551, 2009.
    doi:10.1364/OL.34.002551

    21. Ling, X., X. Zhou, K. Huang, and Y. Liu, "Recent advances in the spin Hall effect of light," Rep. Prog. Phys., Vol. 80, 066401, 2017.
    doi:10.1088/1361-6633/aa5397

    22. Kim, M., D. Lee, and J. Rho, "Spin Hall effect: Spin Hall effect under arbitrarily polarized or unpolarized light," Laser Photonics Rev., Vol. 15, 7, 2021.

    23. Petersen, J., J. Volz, and A. Rauschenbeutel, "Chiral nanophotonic waveguide interface based on spin-orbit interaction of light," Science, Vol. 34, 67-71, 2014.
    doi:10.1126/science.1257671

    24. Bliokh, K. Y., F. J. Rodriguez-Fortuno, F. Nori, and A. V. Zayats, "Spin-orbit interactions of light," Nat. Photon., Vol. 9, 796, 2015.
    doi:10.1038/nphoton.2015.201

    25. Cardano, F. and L. Marrucci, "Spin-orbit photonics," Nat. Photon., Vol. 9, 776, 2015.
    doi:10.1038/nphoton.2015.232

    26. Shao, Z., J. Zhu, Y. Chen, Y. Zhang, and S. Yu, "Spin-orbit interaction of light induced by transverse spin angular momentum engineering," Nat. Commun., Vol. 9, 1-11, 2018.
    doi:10.1038/s41467-017-02088-w

    27. Fu, S., C. Guo, G. Liu, Y. Li, H. Yin, Z. Li, and Z. Chen, "Spin-orbit optical Hall effect," Phys. Rev. Lett., Vol. 123, 243904, 2019.
    doi:10.1103/PhysRevLett.123.243904

    28. Fang, L., H. Wang, Y. Liang, H. Cao, and J. Wang, "Spin-orbit mapping of light," Phys. Rev. Lett., Vol. 127, 233901, 2021.
    doi:10.1103/PhysRevLett.127.233901

    29. Chi, C., Q. Jiang, Z. Liu, L. Zheng, M. Jiang, H. Zhang, F. Lin, B. Shen, and Z. Fang, "Selectively steering photon spin angular momentum via electron-induced optical spin Hall effect," Sci. Adv., Vol. 7, eabf8011, 2021.
    doi:10.1126/sciadv.abf8011

    30. Zhou, X., Z. Xiao, H. Luo, and S. Wen, "Experimental observation of the spin Hall effect of light on a nanometal film via weak measurements," Phys. Rev. A, Vol. 85, 043809, 2012.
    doi:10.1103/PhysRevA.85.043809

    31. Mi, C., S. Chen, X. Zhou, K. Tian, H. Luo, and S. Wen, "Observation of tiny polarization rotation rate in total internal reflection via weak measurements," Photonics Res., Vol. 5, 92-96, 2017.
    doi:10.1364/PRJ.5.000092

    32. Wang, B., K. Rong, E. Maguid, V. Kleiner, and E. Hasman, "Probing nanoscale fluctuation of ferromagnetic meta-atoms with a stochastic photonic spin Hall effect," Nat. Nanotechnol., Vol. 15, 450-456, 2020.
    doi:10.1038/s41565-020-0670-0

    33. Wang, R., et al., "Ultrasensitive and real-time detection of chemical reaction rate based on the photonic spin Hall effect," Apl. Photonics, Vol. 5, 016105, 2020.
    doi:10.1063/1.5131183

    34. Li, S., Z. Chen, L. Xie, Q. Liao, X. Zhou, Y. Chen, and X. Lin, "Weak measurements of the waist of an arbitrarily polarized beam via in-plane spin splitting," Opt. Express, Vol. 29, 8777-8785, 2021.
    doi:10.1364/OE.420432

    35. Zhou, X., L. Sheng, and X. Ling, "Photonic spin Hall effect enabled refractive index sensor using weak measurements," Sci. Rep., Vol. 8, 1-8, 2018.

    36. Zhu, W., et al., "Black phosphorus terahertz sensing based on photonic spin Hall effect," Opt. Express, Vol. 28, 25869-25878, 2020.
    doi:10.1364/OE.399071

    37. Nie, P., L. Sheng, L. Xie, Z. Chen, X. Zhou, Y. Chen, and X. Lin, "Gas sensing near exceptional points," J. Phys. D, Vol. 54, 254001, 2021.
    doi:10.1088/1361-6463/abf167

    38. Liu, S., X. Yin, and H. Zhao, "Dual-function photonic spin Hall effect sensor for high-precision refractive index sensing and graphene layer detection," Opt. Express, Vol. 30, 31925-31936, 2022.
    doi:10.1364/OE.463923

    39. Zhou, J., H. Qian, G. Hu, H. Luo, S. Wen, and Z. Liu, "Broadband photonic spin Hall meta-lens," ACS Nano, Vol. 12, 82-88, 2018.
    doi:10.1021/acsnano.7b07379

    40. Du, L., et al., "On-chip photonic spin Hall lens," ACS Photonics, Vol. 6, 1840-1847, 2019.
    doi:10.1021/acsphotonics.9b00551

    41. Jin, R., L. Tang, J. Li, J. Wang, Q. Wang, Y. Liu, and Z. G. Dong, "Experimental demonstration of multidimensional and multifunctional metalenses based on photonic spin hall effect," ACS Photonics, Vol. 7, 512-518, 2020.
    doi:10.1021/acsphotonics.9b01608

    42. Xie, Z., T. Lei, H. Qiu, Z. Zhang, H. Wang, and X. Yuan, "Broadband on-chip photonic spin Hall element via inverse design," Photonics Res., Vol. 8, 121-126, 2020.
    doi:10.1364/PRJ.8.000121

    43. He, A., Y. Xu, B. Gao, T. Zhang, and J. Zhang, "Subwavelength broadband photonic spin hall devices via optical slot antennas," Laser Photonics Rev., Vol. 15, 2000460, 2021.
    doi:10.1002/lpor.202000460

    44. Lei, T., et al., "On-chip high-speed coherent optical signal detection based on photonic spin-Hall effect," Laser Photonics Rev., Vol. 16, 2100669, 2022.
    doi:10.1002/lpor.202100669

    45. Jackson, J. D., Classical Electrodynamics, Wiley, New York, 1962.

    46. Kong, J. A., Electromagnetic Wave Theory, EMW Publishing, Cambridge, MA, 2008.

    47. Vuks, M. F., "Determination of the optical anisotropy of aromatic molecules from the double refraction of crystals," Opt. Spectrosc., Vol. 20, 361, 1966.

    48. Li, J. and S. T. Wu, "Extended Cauchy equations for the refractive indices of liquid crystals," J. Appl. Phys., Vol. 95, 896-901, 2004.
    doi:10.1063/1.1635971

    49. Li, J., S. Gauza, and S. T. Wu, "Temperature effect on liquid crystal refractive indices," J. Appl. Phys., Vol. 96, 19-24, 2004.
    doi:10.1063/1.1757034

    50. Wu, S. T., "Birefringence dispersions of liquid crystals," Phys. Rev. A, Vol. 33, 1270, 1986.
    doi:10.1103/PhysRevA.33.1270

    51. Haller, I., "Thermodynamic and static properties of liquid crystals," Prog. Solid State Chem., Vol. 10, 103-118, 1975.
    doi:10.1016/0079-6786(75)90008-4

    52. Li, J., S. Gauzia, and S. T. Wu, "High temperature-gradient refractive index liquid crystals," Opt. Express, Vol. 12, 2002-2010, 2004.
    doi:10.1364/OPEX.12.002002

    53. Luo, H., W. Hu, X. Yi, H. Liu, and J. Zhu, "Amphoteric refraction at the interface between isotropic and anisotropic media," Opt. Commun., Vol. 254, 353-360, 2005.
    doi:10.1016/j.optcom.2005.05.050

    54. Shah, S., X. Lin, L. Shen, M. Renuka, B. Zhang, and H. Chen, "Interferenceless polarization splitting through nanoscale van der Waals heterostructures," Phys. Rev. Appl., Vol. 10, 034025, 2018.
    doi:10.1103/PhysRevApplied.10.034025

    55. Aiello, A., M. Merano, and J. P. Woerdman, "Duality between spatial and angular shift in optical reflection," Phys. Rev. A, Vol. 80, 061801, 2009.
    doi:10.1103/PhysRevA.80.061801

    56. Zhou, X., L. Xie, X. Ling, S. Cheng, Z. Zhang, H. Luo, and H. Sun, "Large in-plane asymmetric spin angular shifts of a light beam near the critical angle," Opt. Lett., Vol. 44, 207-210, 2019.
    doi:10.1364/OL.44.000207

    57. Ling, X., et al., "Giant photonic spin Hall effect in momentum space in a structured metamaterial with spatially varying birefringence," Light: Sci. Appl., Vol. 4, e290, 2015.
    doi:10.1038/lsa.2015.63

    58. Ling, X., et al., "Topology-induced phase transitions in spin-orbit photonics," Laser Photonics Rev., Vol. 15, 2000492, 2021.
    doi:10.1002/lpor.202000492

    59. Ling, X., W. Xiao, S. Chen, X. Zhou, H. Luo, and L. Zhou, "Revisiting the anomalous spin-Hall effect of light near the Brewster angle," Phys. Rev. A, Vol. 103, 033515, 2021.
    doi:10.1103/PhysRevA.103.033515

    60. Mazanov, M., O. Yermakov, A. Bogdanov, and A. Lavrinenko, "On anomalous optical beam shifts at near-normal incidence," APL Photonics, Vol. 7, 101301, 2022.
    doi:10.1063/5.0111203

    61. Neugebauer, M., S. Nechayev, M. Vorndran, G. Leuchs, and P. Banzer, "Weak measurement enhanced spin Hall effect of light for particle displacement sensing," Nano Lett., Vol. 19, 422, 2019.
    doi:10.1021/acs.nanolett.8b04219