In this work a new method based on the adaptive neuro-fuzzy inference system (ANFIS) was successfully introduced to determine the characteristic parameters, effective permittivities and characteristic impedances, of conventional coplanar waveguides. The ANFIS has the advantages of expert knowledge of fuzzy inference system and learning capability of neural networks. A hybrid-learning algorithm, which combines least-square method and backpropagation algorithm, is used to identify the parameters of ANFIS. There are very good agreement between the results of ANFIS models, experimental works, conformal mapping technique, spectral domain approach and a commercial electromagnetic simulator, MMICTL.
2. Carlsson, E. and S. Gevorgian, "Conformal mapping of the field and charge distributions in multilayered substrate CPWs," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 1544-1552, 1999.
doi:10.1109/22.780407
3. Bedair, S. S. and I. Wolff, "Fast, accurate and simple approximate analysis formulas for calculating the parameters of supported coplanar waveguides for (M)MIC’s," IEEE Transactions on Microwave Theory and Techniques, Vol. 40, 41-48, 1992.
doi:10.1109/22.108321
4. Gevorgian, S. S., "Basic characteristics of two layered substrate coplanar waveguides," Electron. Letters, Vol. 30, 1236-1237, 1994.
doi:10.1049/el:19940861
5. Wen, C. P., "Coplanar waveguide: A surface strip transmission line suitable for nonreciprocal gyromagnetic device applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 17, 1087-1090, 1969.
doi:10.1109/TMTT.1969.1127105
6. Chen, E. and S. Y. Chou, "Characteristics of coplanar transmission lines on multilayer substrates," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 939-945, 1997.
doi:10.1109/22.588606
7. Cheng, K. K. M. and I. D. Robertson, "Numerically efficient spectral domain approach to the quasi-TEM analysis of supported coplanar waveguide structures: Modeling and experiments," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 1958-1965, 1994.
doi:10.1109/22.320780
8. Shigesawa, H. and M. Tsuji, "Conductor-backed slot line and coplanar waveguide: Dangers and full-wave analysis," IEEE MTT-S Dig., 199-202, 1988.
9. Aksun, M. I. and H. Morkoc, "GaAs on Si as a substrate for microwave and millimeter-wave monolithic integration," IEEE Transactions Microwave Theory Techniques, Vol. 36, 160-163, 1988.
doi:10.1109/22.3500
10. Knorr, J. B. and K. D. Kuchler, "Analysis of coupled slots and coplanar strips on dielectric substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 23, 541-548, 1975.
doi:10.1109/TMTT.1975.1128624
11. Davies, J. B. and D. M. Syahkal, "Spectral domain solution of arbitrary coplanar transmission lines with multilayer substrate," IEEE Transactions on Microwave Theory and Techniques, Vol. 25, 143-149, 1977.
doi:10.1109/22.76444
12. Chang, C. N., W. C. Chang, and C. H. Chen, "Full-wave analysis of multilayer coplanar lines," IEEE Transactions on Microwave Theory and Techniques, Vol. 39, 747-750, 1991.
13. Schroeder, W. and I. Wolff, "Full-wave analysis of the influence of conductor shape and structure details on losses in coplanar waveguide," Microwave Symposium Digest, IEEE MTT-S International, Vol. 3, 1273-1276, 1995.
14. Jansen, R., "Hybrid mode analysis of end effects of planar microwave and millimeter wave transmission line," IEE Proceedings, Part H-Microwaves, Optics and Antennas, Vol. 128, 77-86, 1981.
doi:10.1109/TMTT.1969.1126946
15. Hilberg, W., "From approximations to exact relations for characteristic impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 17, 259-265, 1969.
doi:10.1109/21.256541
16. Jang, J.-S. R., "ANFIS: Adaptive-network-based fuzzy inference system," IEEE Trans Systems Man and Cybernetics, Vol. 23, 665-685, 1993.
17. Jang, J.-S. R., C.T. Sun, and E. Mizutani, Neuro-Fuzzy and Soft Computing: A Computational Approach to Learning and Machine Intelligence, Prentice-Hall, Upper Saddle River, NJ, 1997.
18. Brown, M. and C. Haris, Neuro-Fuzzy Adaptive Modeling and Control, Prentice-Hall, Englewood Cliffs, NJ, 1994.
19. Constantin, V. A., Fuzzy Logic and Neuro-Fuzzy Applications Explained, Prentice-Hall, Englewood Cliffs, NJ, 1995.
20. Lin, C. T. and C. S. G. Lee, Neural Fuzzy Systems: A Neuro-Fuzzy Synergism to Intelligent Systems, Prentice-Hall, Upper Saddle River, NJ, 1996.
doi:10.1163/156939304322749599
21. Guney, K. and N. Sarikaya, "Adaptive neuro-fuzzy inference system for the input resistance computation of rectangular microstrip antennas with thin and thick substrates," Journal of Electromagnetic Waves and Applications, Vol. 18, 23-39, 2004.
doi:10.1109/LMWC.2005.863245
22. Rahouyi, E. B., J. Hinojosa, and J. Garrigos, "Neuro-fuzzy inference modeling techniques for microwave components," IEEE Microwave and Wireless Components Letters, Vol. 16, 72-74, 2006.
23. AC Microwave’s MMICTL in Linmic Interconnect, Version 3, www.linmic.com, 2006.
doi:10.1049/el:19730261
24. Dupuis, P. A. J. and C. K. Campbell, "Characteristic impedance of surface-strip coplanar waveguides," Electron. Letters, Vol. 9, 354-355, 1973.
doi:10.1049/el:19790065
25. Becker, J. P. and D. Jager, "Electrical properties of coplanar transmission lines on lossless and lossy substrate," Electron. Letters, Vol. 15, 88-90, 1979.
26. Riad, A. A., S. M. Riad, M. Ahmad, F. W. Stephenson, and R. A. Ecker, "Thick-film coplanar strip and slot lines for microwave and wideband integrated circuits," Int. Microelectronics Symp. Dig., 8-21, Reno, Nevada, 1982.