Vol. 6

Latest Volume
All Volumes
All Issues
2008-04-08

Neural Models for the Elliptic- and Circular-Shaped Microshield Lines

By Sabri Kaya, Mustafa Turkmen, Kerim Guney, and Celal Yildiz
Progress In Electromagnetics Research B, Vol. 6, 169-181, 2008
doi:10.2528/PIERB08031216

Abstract

This article presents a new approach based on artificial neural networks (ANNs) to calculate the characteristic parameters of elliptic and circular-shaped microshield lines. Six learning algorithms, bayesian regularization (BR), Levenberg-Marquardt (LM), quasi-Newton (QN), scaled conjugate gradient (SCG), resilient propagation (RP), and conjugate gradient of Fletcher-Reeves (CGF), are used to train the ANNs. The neural results are in very good agreement with the results reported elsewhere. When the performances of neural models are compared with each other, the best and worst results are obtained from the ANNs trained by the BR and CGF algorithms, respectively.

Citation


Sabri Kaya, Mustafa Turkmen, Kerim Guney, and Celal Yildiz, "Neural Models for the Elliptic- and Circular-Shaped Microshield Lines," Progress In Electromagnetics Research B, Vol. 6, 169-181, 2008.
doi:10.2528/PIERB08031216
http://test.jpier.org/PIERB/pier.php?paper=08031216

References


    1. Dib, N. I., W. P. Harokopus, L. P. B. Katehi, C. C. Ling, and G. M. Rebeiz, Study of a novel planar transmission line, IEEE MTT-S Int. Microwave Symp. Dig., 623-626, Boston, 1991.

    2. Dib, N. I. and L. P. B. Katehi, "Impedance calculation for the microshield line," IEEE Microwave Guided Wave Lett., Vol. 2, 406-408, 1992.
    doi:10.1109/75.160122

    3. Schutt-Aine, J. E., "Static analysis of V transmission lines," IEEE Trans. Microwave Theory Techniques, Vol. 40, 659-664, 1992.
    doi:10.1109/22.127513

    4. Yuan, N., C. Ruan, and W. Lin, "Analytical analyses of V, elliptic, and circular-shaped microshield transmission lines," IEEE Trans. Microwave Theory Techniques, Vol. 42, 855-859, 1994.
    doi:10.1109/22.293535

    5. Cheng, K. K. M. and I. D. Robertson, "Quasi-TEM study of microshield lines with practical cavity sidewall profiles," IEEE Trans. Microwave Theory Techniques, Vol. 43, 2689-2694, 1995.
    doi:10.1109/22.477845

    6. Cheng, K. K. M. and I. D. Robertson, "Simple and explicit formulas for the design and analysis of asymmetrical V-shaped microshield line," IEEE Trans. Microwave Theory Techniques, Vol. 43, 2501-2504, 1995.
    doi:10.1109/22.466188

    7. Kiang, J. F., "Characteristic impedance of microshield lines with arbitrary shield cross section," IEEE Trans. Microwave Theory Techniques, Vol. 46, 1328-1331, 1998.
    doi:10.1109/22.709483

    8. Yan, Y. and P. Pramanick, "Finite-element analysis of generalized V- and W-shaped edge and broadside-edge-coupled shielded microstrip line on anisotropic medium," IEEE Trans. Microwave Theory Techniques, Vol. 49, 1649-1657, 2001.
    doi:10.1109/22.942579

    9. Lu, M. and P. J. Leonard, "Edge-based finite-element analysis of the field patterns in V-shaped microshield line," Microwave and Optical Technology Letters, Vol. 41, 43-47, 2004.
    doi:10.1002/mop.20041

    10. Ashesh, C. B., D. Bhattacharya, and R. Garg, "Characterization of V-groove coupled microshield line," IEEE Microwave and Wireless Components Letters, Vol. 15, 110-112, 2005.
    doi:10.1109/LMWC.2004.842849

    11. Christodoulou, C. G. and M. Georgiopoulos, Application of Neural Networks In Electromagnetics, Artech House, MA, 2001.

    12. Zhang, Q. J. and K. C. Gupta, Neural Networks for RF and Microwave Design, Artech House, 2000.

    13. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Artificial neural networks for calculating the characteristic impedance of air-suspended trapezoidal and rectangular-shaped microshield lines," Journal of Electromagnetic Waves and Applications, Vol. 20, 1161-1174, 2006.
    doi:10.1163/156939306777442917

    14. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Neural models for the broadside-coupled V-shaped microshield coplanar waveguides," International Journal of Infrared and Millimeter Waves, Vol. 27, 1241-1255, 2006.
    doi:10.1007/s10762-006-9132-5

    15. Yildiz, C., K. Guney, M. Turkmen, and S. Kaya, "Neural models for coplanar strip line synthesis," Progress In Electromagnetics Research, Vol. 69, 127-144, 2007.
    doi:10.2528/PIER06120802

    16. Guney, K., C. Yildiz, S. Kaya, and M. Turkmen, "Neural models for the V-shaped conductor-backed coplanar waveguides," Microwave and Optical Technology Letters, Vol. 49, 1294-1299, 2007.
    doi:10.1002/mop.22473

    17. Yildiz, C., K. Guney, M. Turkmen, and S. Kaya, "Neural models for quasi-static analysis of conventional and supported coplanar waveguides," AEU International Journal of Electronics and Communications, Vol. 61, 521-527, 2007.
    doi:10.1016/j.aeue.2006.09.003

    18. Mackay, D. J. C., "Bayesian interpolation," Neural Computation, Vol. 4, 415-447, 1992.
    doi:10.1162/neco.1992.4.3.415

    19. Hagan, M. T. and M. Menjah, "Training feedforward networks with the Marquardt algorithm," IEEE Transactions on Neural Networks, Vol. 5, 989-993, 1994.
    doi:10.1109/72.329697

    20. Gill, P. E., W. Murray, and M. H. Wright, Practical Optimization, Academic Press, New York, 1981.

    21. Moller, M. F., "A scaled conjugate gradient algorithm for fast supervised learning," Neural Networks, Vol. 6, 525-533, 1993.
    doi:10.1016/S0893-6080(05)80056-5

    22. Reidmiller, M. and H. Braun, A direct adaptive method for faster backpropagation learning: The Rprop algorithm, Proceedings of the IEEE Int. Conf. on Neural Networks, 586-591, San Francisco, 1993.

    23. Fletcher, R. and C. M. Reeves, "Function minimization by conjugate gradients," Comput. J., Vol. 7, 149-154, 1964.
    doi:10.1093/comjnl/7.2.149

    24. Haykin, S., Neural Networks: A Comprehensive Foundation, Macmillan College Publishing Comp., New York, USA, 1994.