Vol. 20

Latest Volume
All Volumes
All Issues
2010-04-21

Target-Aided SAR Image Intelligent Compression

By Xiao-Hong Yuan, Zhao-Da Zhu, and Gong Zhang
Progress In Electromagnetics Research B, Vol. 20, 285-302, 2010
doi:10.2528/PIERB10012401

Abstract

Intelligent compression is important to image transmission in real time over bandlimited channels for synthetic aperture radar (SAR) payloads deployed on unmanned aerial vehicles (UAV), where target areas are encoded with high fidelity, while background data are encoded with lesser fidelity. A target-aided SAR image intelligent compression (TAIC)system is presented in this paper, which utilizes robust fixed-rate trellis-coded quantization (FRTCQ) to encode target sequences and FRTCQ to encode background sequences. Multiresolution constant false alarm rate (CFAR) detector in wavelet domain using db4 based on the multiscale model of target is embedded. Generic region of interest (ROI) mask is created. In order to achieve better quality of target areas decoded, ROI mask is modified. The improved performance using TAIC system by compressing target chips from training set and testing set in Moving and Stationary Target Acquisition and Recognition (MSTAR) database is demonstrated.

Citation


Xiao-Hong Yuan, Zhao-Da Zhu, and Gong Zhang, "Target-Aided SAR Image Intelligent Compression," Progress In Electromagnetics Research B, Vol. 20, 285-302, 2010.
doi:10.2528/PIERB10012401
http://test.jpier.org/PIERB/pier.php?paper=10012401

References


    1. Chan, Y. K. and V. C. Koo, "An introduction to Synthetic Aperture Radar (SAR)," Progress In Electromagnetics Research B, Vol. 2, 27-60, 2008.
    doi:10.2528/PIERB07110101

    2. Li, N.-J., C.-F. Hu, L.-X. Zhang, and J.-D. Xu, "Overview of RCS extrapolation techniques to aircraft targets," Progress In Electromagnetics Research B, Vol. 9, 249-262, 2008.
    doi:10.2528/PIERB08080706

    3. Zou, B., H. Cai, L. Zhang, and M. Lin, "Model of man-made target beneath foliage using polinsar," Progress In Electromagnetics Research Letters, Vol. 2, 21-28, 2008.
    doi:10.2528/PIERL07122802

    4. Xue, W. and X.-W. Sun, "Target detection of vehicle volume detecting radar based on wigner-hough transform," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 11, 1513-1523, 2007.
    doi:10.1163/156939307782000334

    5. Lee, J. H. and H. T. Kim, "Radar target discrimination using transient response reconstruction," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 5, 655-669, 2005.
    doi:10.1163/1569393053305062

    6. Jung, J. H., H. T. Kim, and K. T. Kim, "Comparisons of four feature extraction approaches based on Fisher's linear discriminant criterion in radar target recognition," Journal of Electromagnetic Waves and Applications, Vol. 21, No. 2, 251-265, 2007.
    doi:10.1163/156939307779378781

    7. Seo, D.-K., K. T. Kim, I. S. Choi, and H. T. Kim, "Wide-angle radar target recognition with subclass concept," Progress In Electromagnetics Research, Vol. 44, 231-248, 2004.
    doi:10.2528/PIER03060301

    8. Alan, C., M. Kristo, L. Austin, and L. Margaret, "A compression of detected SAR imagery with JPEG2000," SPIE, Vol. 4115, 510-520, 2000.

    9. Zhang, J., Y. Huang, and H. Tian, SAR image compression based on image decomposing and targets extracting, 1st Asian and Paci¯c Conference on Synthetic Aperture Radar Proceedings, 671-673, 2007.

    10. Venkatraman, M., H. Kwon, and N. M. Nasrabadi, "Object-based SAR image compression using vector quantization," IEEE Transactions on Aerospace and Electronic Systems, Vol. 36, No. 4, 1036-1046, 2000.
    doi:10.1109/7.892656

    11. Bonneau, R. and G. Abousleman, "Target-aided fixed-quality-of-service compression of SAR imagery for transmission over noisy wireless channels," ICASSP'02, Vol. 4, IV-3413-IV-3416, 2002.

    12. Tanabe, N. and N. Farvardin, "Subband image coding using entropy coded quantization over noisy channels," IEEE Journal Select. Areas Commun., Vol. 10, 926-642, 1992.
    doi:10.1109/49.138998

    13. Abousleman, G. P., "Wavelet-based hyperspectral image coding using robust fixed-rate trellis-coded quantization," SPIE, Vol. 3372, 74-85, 1998.
    doi:10.1117/12.312610

    14. Birney, K. and T. Fishcher, "On the modeling of DCT and subband image data for compression," IEEE Transactions on Image Processing, Vol. 4, No. 2, 186-193, 1995.
    doi:10.1109/83.342184

    15. Park, K.-H. and H. W. Park, "Region-of-interest coding based on set partioning in hierarchical trees," IEEE Transaction on Circuits and Systems for Video Technology, Vol. 12, No. 2, 106-113, 2002.
    doi:10.1109/76.988657

    16. Daubechies, I. and W. Sweldens, "Factoring wavelet transforms into lifting steps," The Journal of Fourier Analysis and Applications, Vol. 40, No. 3, 247-269, 1998.

    17. Novak, L. and S. Owirka, "Effects of polarization and resolution on SAR ATR," IEEE Transactions on Aerospace and Electronic Systems , Vol. 33, No. 1, 102-116, 1997.
    doi:10.1109/7.570713

    18. Gorman, J. D., Assessing the impact of image compression on SAR automatic target detection and cueing, Radar Conference, 118-123, 1996.

    19. Kim, A. and H. Krim, "Hierarchical stochastic modeling of SAR imagery for segmentation/compression," IEEE Transaction on Signal Processing, Vol. 47, No. 2, 458-468, 1999.
    doi:10.1109/78.740129

    20. Lombardom, P., M. Sciotti, and L. M. Kaplan, SAR prescreening using both target and shadow information, IEEE Radar Conference, 147-152, Atlanta, USA, 2001.