Vol. 21

Latest Volume
All Volumes
All Issues
2010-05-20

Optical Effects on the Characteristics of a Nanoscale Finfet

By R. Ramesh, M. Madheswaran, and K. Kannan
Progress In Electromagnetics Research B, Vol. 21, 235-255, 2010
doi:10.2528/PIERB10032602

Abstract

The effect of optical radiation on a uniformly doped nanoscale FinFET considering quantum mechanical effects has been theoretically examined and analyzed. The device characteristics are obtained from the self-consistent solution of 3D Poisson-Schrödinger equation using interpolating wavelet method. To our best knowledge this is the first approach for the self-consistent solution to surface potential computations of nanoscale FinFET photodetector using interpolating wavelets. This method provides more accurate results by dynamically adjusting the computational mesh and scales the CPU time linearly with the number of mesh points using polynomial interpolation, hence reducing the numerical cost. A fine mesh can be used in domains where the unknown quantities are varying rapidly and a coarse mesh can be used where the unknowns are varying slowly. The results obtained for dark and illuminated conditions are used to examine the performance of the device for its suitable use as a photodetector.

Citation


R. Ramesh, M. Madheswaran, and K. Kannan, "Optical Effects on the Characteristics of a Nanoscale Finfet," Progress In Electromagnetics Research B, Vol. 21, 235-255, 2010.
doi:10.2528/PIERB10032602
http://test.jpier.org/PIERB/pier.php?paper=10032602

References


    1. Chakrabarti, P., S. Kumar, P. K. Rout, and B. G. Rappai, A proposed MISFET photodetector, Proceeding 3rd Asia Pacific Microwave Conference, 575-578, Tokyo, Japan, 1990.

    2. Chakrabarti, P. and I. Venugopal, "Charge-sheet model of a proposed MISFET photodetector," Phys. Stat. Sol. (A), Vol. 147, 277-291, 1995.
    doi:10.1002/pssa.2211470129

    3. Ohata, K., "InP MISFET," Workshop Digest, Asia Pacific Microwave Conference, Tokyo, 15-20, Japan, 1990.

    4. Chakrabarti, P., B. K. Mishra, Y. PratapReddy, and S. Prakash, "Optically controlled characteristics of an InGaAs MISFET," Phys. Stat. Sol. (A), Vol. 147, 277-291, 1995.
    doi:10.1002/pssa.2211470129

    5. Okamoto, K. and S. Inoue, "Photoresponse of MOSFET," Solid-state Electronics, Vol. 16, 657-662, 1973.
    doi:10.1016/0038-1101(73)90107-X

    6. Kabeer, M., K. Gowri, and V. Rajamani, "Three dimensional modeling and simulation of a nano MISFET photodetector," Journal of Optoelectronics and Advanced Materials, Vol. 9, No. 9, 2879-2885, 2007.

    7. Colinge, J.-P., "Multiple-gate SOI MOSFETs," Solid State Electron., Vol. 48, No. 6, 897-905, 2004.
    doi:10.1016/j.sse.2003.12.020

    8. Taur, Y., L. H. Wann, and D. J. Frank, "25nm CMOS design considerations," IEDM Tech. Dig., 789-792, 1998.

    9. Taur, Y., D. A. Buchanan, W. Chen, D. J. Frank, K. E. Ismail, S.-H. Lo, G. A. Sai-Halasz, R. G. Viswanathan, H.-J. C. Wann, S. J. Wind, and H.-S. P.Wong, "CMOS scaling into the nanometer regime," Proc. IEEE, Vol. 85, No. 4, 486-504, 1997.
    doi:10.1109/5.573737

    10. Frank, D. J., R. H. Dennard, and E. Nowak, "Device scaling limits of Si MOSFETs and their application dependencies," Proc. IEEE, Vol. 89, No. 3, 259-288, 2001.
    doi:10.1109/5.915374

    11. Taur, Y., CMOS scaling beyond 0.1 μm: How far can it go?, Proc. Symp. VLSI Technology, 6-9, 1999.

    12. Frank, D. J., S. E. Laux, and M. V. Fischetti, "Monte Carlo simulation of 30nm dual-gate MOSFET: How short can Si go?," IEDM Tech. Dig., 553-556, 1992.

    13. Frank, D. J., S. E. Laux, and M. V. Fischetti, "Monte Carlo simulation of p-and n-channel dual-gate Si MOSFETs at the limits of scaling," IEEE Trans. Electron Devices, Vol. 40, 2103, 1993.
    doi:10.1109/16.239768

    14. Yan, R.-H., A. Ourmazd, and K. F. Lee, "Scaling the Si MOSFET: From bulk to SOI to bulk," IEEE Trans. Electron Devices, Vol. 39, 1704-1710, 1992.
    doi:10.1109/16.141237

    15. Suzuki, K., T. Tanaka, Y. Tasaka, H. Horie, and Y. Arimato, "Scaling theory for double-gate SOI MOSFETs," IEEE Trans. Electron Devices, Vol. 40, 2326-2329, 1993.
    doi:10.1109/16.249482

    16. Wong, H.-S. P., D. J. Frank, Y. Taur, and J. M. C. Stork, "Design and performance considerations for sub-0.1 μm double-gate SOI MOSFETs," IEDM Tech. Dig., 747-750, 1994.

    17. Wong, H.-S. P., K. K. Chan, and Y. Taur, "Self-aligned (top and bottom) double-gate MOSFET with a 25nm thick silicon channel," IEDM Tech. Dig., 427-430, 1997.
    doi:10.1109/IEDM.1997.650416

    18. Lee, J.-H., G. Taraschi, A. Wei, T. A. Langdo, E. A. Fitzgerald, and D. A. Antoniadis, "Super self-aligned double-gate (SSDG) MOSFETs utilizing oxidation rate difference and selective epitaxy ," IEDM Tech., Dig., 71-74, 1999.

    19. Su, T., J. P. Denton, and G. W. Neudeck, New planar self-aligned double-gate fully depleted P-MOSFETs using epitaxial lateral overgrowth (ELO) and selectively grown source/drain (S/D), IEEE Int. SOI Conf., 110-111, 2000.

    20. Hisamoto, D., W.-C. Lee, J. Kedzierski, H. Taeuchi, K. Asano, C. Kuo, R. Anderson, T.-J. King, J. Bokor, and C. Hu, "FinFET a self-aligned double-gate MOSFET scalable to 20 nm," IEEE Trans. Electron Devices, Vol. 47, 2320-2325, 2000.

    21. Huang, X., W.-C. Lee, C. Ion Kuo, D. Hisamoto, L. Chang, J. Kedzierski, R. Anderson, H. Takeuchi, Y.-K. Choi, K. Asano, V. Subramanian, V. King, J. Bokor, and V. Hu, "Sub-50nm Pchannel FinFET," IEEE Trans. Electron Devices, Vol. 48, 880-886, 2001.
    doi:10.1109/16.918235

    22. Dnyanesh Havaldar, S., G. Katti, N. DasGupta, and A. DasGupta, "Subthreshold current model of FinFETs based on analytical solution of 3-D Poisson's Equation," IEEE Trans. Electron Devices, Vol. 53, No. 4, 737-742, 2006.
    doi:10.1109/TED.2006.870874

    23. Pei, G., J. Kedzierski, P. Oldiges, M. Ieong, and V. Chin-Chaun Kan, "FinFET design considerations based on 3-D simulation and analytical modeling," IEEE Trans. Electron Devices, Vol. 49, No. 8, 1411-1419, 2002.
    doi:10.1109/TED.2002.801263

    24. El Hamid, H. A., J. R. Guitart, V. Kilchytska, D. Flandre, and B. Iniguez, "A 3-D analytical physically based model for the subthreshold swing in undoped trigate FinFETs ," IEEE Trans. Electron Devices, Vol. 54, No. 9, 2487-2496, 2007.
    doi:10.1109/TED.2007.902415

    25. Yang, W., Z. Yu, and L. Tian, "Scaling theory for FinFETs based on 3-D effects investigation," IEEE Trans. Electron Devices, Vol. 54, No. 5, 1140-1147, 2007.
    doi:10.1109/TED.2007.893808

    26. Shao, X. and Z. P. Yu, "Nanoscale FinFET simulation: A quasi-3D quantum mechanical model using NEGF," Solid-state Electronics, Vol. 49, 1435-1445, 2005.
    doi:10.1016/j.sse.2005.04.017

    27. Lundstrom, M. and J.-H. Rhew, "A landauer approach to nanoscale MOSFETs," Journal of Computational Electronics, Vol. 1, 481-489, 2005.

    28. Zhang, D., X. Shao, V. Yu, and V. Tiang, "A 3D charge model for FinFET with ballistic transport," Proc. SISPAD, 195-198, 2005.

    29. Khan, H., V. Mamaluy, and V. Vasileska, Ballistic quantummechanical simulation of 10nm FinFET using CBR method, Journal of Physics: Conf. Series, Vol. 38, 196-199, 2006.

    30. Kedzierski, V., V. Fried, E. J. Nowak, V. Kanarsky, J. H. Rankin, H. Hana¯, W. Natzle, D. Boyd, Y. Zhang, V. Roy, J. Newbury, V. Yu, V. Yang, P. Saunders, C. P. Willets, A. Johnson, S. P. Cole, H. E. Young, N. Carpenter, D. Rakowski, B. A. Rainey, P. E. Coltrell, M. Leong, and H.-S. Philip Wong, "High performance symmetric-gate and CMOS-compatible Vt asymmetric-gate FinFET devices ," IEDM Tech. Dig., 437-440, 2001.

    31. Tang, S. H., L. Chang, N. Lindert, Y.-K. Choi, W.-C. Lee, X. Huang, and . Subramanian, "FinFET ---quasiplanar double-gate MOSFET," Proc. Int. Solid-state Circuits Conf. (ISSCC), 118-119, 2001.

    32. Fried, D. M., A. P. Johnson, E. J. Nowak, J. H. Rankin, and C. R. Willets, A sub-40 nm body thickness N-type FinFET, Proc. Device Res. Conf., 24-25, 2001.

    33. Ben Abdallah, N., M. Mouis, and C. Negulescu, "An accelerated algorithm for 2D simulations of the quantum ballistic transport in nanoscale MOSFETs ," Journal of Computational Physics, 2007, Vol. 225, 74-99, 2006.

    34. Ben Abdallah, N. and O. Pinaud, "Multiscale simulation of transport in an open quantum system: Resonances and WKB interpolation ," Journal of Computational Physics, Vol. 213, 288-310, 2006.
    doi:10.1016/j.jcp.2005.08.012

    35. Wang, J., Device physics and simulation of silicon nanowire transistors , Ph.D. Thesis, Purdue University, 2005.

    36. Kim, K., O. Kwon, J. Seo, T. Won, "Nanoscale device modeling and simulation: Fin Field-Effect Transistor (FinFET)," Japanese Journal of Applied Physics, Vol. 43, 3784-3789, 2004.

    37. De Marchi, L., F. Franze, and E. Baravelli, "Wavelet-based adaptive mesh generation for device simulation," Solid-state Electronics, Vol. 50, 650-659, 2006.
    doi:10.1016/j.sse.2006.03.018

    38. Jameson, L., "A wavelet-optimized very high order adaptive grid and order numerical method," SIAM J. SCI Comput., Vol. 19, No. 6, 198-201, 1998.

    39. Fatkulin, I. and J. S. Hesthaven, "Adaptive high-order finite-difference method for nonlinear wave problems," Scientific Computing Report Series, 2001.

    40. Krumholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. Microwave Theory Tech., Vol. 44, 555-571, 1996.

    41. Tentzeris, M. and J. Harvey, "Time adaptive time-domain techniques for the design of microwave circuits," IEEE Microwave Guided Wave Lett., Vol. 9, 96-99, 1999.

    42. Goasguen, S., "Electromagnetic and semiconductor device simulation using interpolating wavelets," IEEE Trans. on Microwave Theory and Techniques, Vol. 49, No. 12, 2258-2265, 2001.

    43. Yasser, A., A. Hussein, M. Samir, and El-Ghazaley, "Extending Multiresolution Time-Domain (MRTD) technique to the simulation of high-frequency active devices," IEEE Trans. on Microwave Theory and Techniques, Vol. 51, No. 7, 1842-1851, 2003.

    44. Toupikov, M. and G. Pan, "On nonlinear modeling of microwave devices using interpolating wavelets," IEEE Trans. on Microwave Theory and Techniques, Vol. 48, No. 4, 500-509, 2000.

    45. Holmstron, M., "Solving hyperbolic PDE's using interpolating wavelets," SIAM J. Sci. Comp., Vol. 21, No. 2, 405-420, 1999.

    46. Daubechies, I., Ten Lectures on Wavelets, Capital City Press, Vermont, 1992.

    47. Mallat, S., "A Wavelet Tour of Signal Processing," Academic Press, New York, 1992.

    48. Amaratunga, K. and J. R. Williams, "Wavelet-Galerkin solutions of one-dimensional partial-differential equations," Int. J. Numer. Methods. Eng., Vol. 37, 2705-2716, 1994.

    49. Janik, T. and B. Majkusiak, "Analysis of the MOS transistor based on the self-consistent solution to the Schrodinger and poisson equations and on the local mobility model ," IEEE Trans. on Electron Devices, Vol. 45, 1263-1271, 1998.

    50. Walls, T. J., V. A. Sverdlov, and K. K. Likharev, "MOSFETs below 10 nm: Quantum theory," Physica E, Vol. 19, 23-27, 2003.