Vol. 21

Latest Volume
All Volumes
All Issues
2010-05-28

Characteristics of Electromagnetic Wave Propagation through a Magnetised Plasma Slab with Linearly Varying Electron Density

By Cigdem Seckin Gurel and Emrah Öncü
Progress In Electromagnetics Research B, Vol. 21, 385-398, 2010
doi:10.2528/PIERB10042205

Abstract

Characteristics of electromagnetic wave propagation through a magnetized plasma slab with linear electron density profile is analysed. In the numerical analysis, cold, weakly ionized, collisional and steady state plasma layer is divided into sufficiently thin, adjacent subslabs, in each of which plasma parameters are constant. Reflection and transmission coe±cients are calculated for discretised plasma by considering electron density profile with positive and negative slopes. Wideband absorbtion characteristic is obtained with high collision frequency and high electron density combination in linearly decreasing profile as well as wideband transmission characteristic is obtained for low collision frequency and low electron density combination in linearly increasing profile of finite length. The general results show that in steady state, plasma layer behaves as a frequency selective medium satisfying the major requirements of current shielding applications as the function of plasma parameters and the strength of external magnetic field excitation. Proposed plasma layer can be used in current shielding and stealth applications as a matching layer between the surface and the incident electromagnetic wave.

Citation


Cigdem Seckin Gurel and Emrah Öncü, "Characteristics of Electromagnetic Wave Propagation through a Magnetised Plasma Slab with Linearly Varying Electron Density," Progress In Electromagnetics Research B, Vol. 21, 385-398, 2010.
doi:10.2528/PIERB10042205
http://test.jpier.org/PIERB/pier.php?paper=10042205

References


    1. Ginzburg, V. L., The Propagation of Electromagnetic Waves in Plasmas, Pergamon Press, New York, 1970.

    2. Heald, M. A. and C. B. Wharton, Plasma Diagnostics with Microwaves, Krieger, New York, 1978.

    3. Vidmar, R. J., "On the use of atmospheric plasmas as electromagnetic reflectors as electromagnetic reflectors and absorbers," IEEE Trans. Plasma Sci., Vol. 18, 733-741, 1990.
    doi:10.1109/27.57528

    4. Laroussi, M. and J. R. Roth, "Numerical calculation of the reflection, absorbtion, and transmission of microwaves by a nonuniform plasma slab ," IEEE Trans. Plasma Sci., Vol. 21, 366-372, 1993.
    doi:10.1109/27.234562

    5. Laroussi, M., "Interaction of microwaves with atmospheric pressure plasmas," Int. J. Infrared Millimeter Waves, Vol. 16, 2069-2083, 1995.
    doi:10.1007/BF02073410

    6. Hu, B. J., G. Wei, and S. L. Lai, "SMM analysis of reflection, absorption, and transmission from nonuniform magnetized plasma slab," IEEE Trans. Plasma Sci., Vol. 29, 1131-1135, 1999.

    7. Shi, J., Y. Gao, J. Wang, Z. Yuan, and Y. Ling, "Electromagnetic reflection of conductive plane covered with magnetized inhomogenous plasma," Int. J. Infrared Millimeter Waves, Vol. 22, 1167-1175, 2001.
    doi:10.1023/A:1015063115375

    8. Tang, D. L., A. P. Sun, X. M. Qiu, and K. Chu, "Interaction of electromagnetic waves with a magnetized nonuniform plasma slab," IEEE Trans. Plasma Sci., Vol. 31, No. 3, 2003.
    doi:10.1109/TPS.2003.811648

    9. Haifeng, Z., S. Fugio, and W. Long, "Interaction of plasmas with microwaves," Plasma Science and Tech., Vol. 5, 1773-1778, 2003.
    doi:10.1088/1009-0630/5/3/003

    10. Bin, G. and X. G. Wang, "Power absorption of high frequency electromagnetic waves in a partially ionized plasma layer in atmosphere conditions," Plasma Science and Tech., Vol. 7, 2645-2648, 2005.
    doi:10.1088/1009-0630/7/1/010

    11. Jin, F., H. Tong, Z. Shi, D. Tang, and P. K. Chu, "Effects of external magnetic field on propagation of electromagnetic wave in uniform magnetized plasma slabs," Computer Physics Communication, Vol. 175, 545-552, 2006.
    doi:10.1016/j.cpc.2006.06.010

    12. Soliman, E. A., A. Helaly, and A. A. Megahed, "Propagation of electromagnetic waves in planar bounded plasma region," Progress In Electromagnetics Research, Vol. 67, 25-37, 2007.
    doi:10.2528/PIER06071102

    13. Zhang, J. and Z. Q. Liu, "Electromagnetic reflection from conductive plate coated with nonuniform plasma," Int. J. Infrared Millimeter Waves, Vol. 28, 71-78, 2007.
    doi:10.1007/s10762-006-9176-6

    14. Liu, M., X. Hu, Z. Jiang, S. Zhang, C. Lan, and Y. Pan, "Reflection of a wave from a thin plasma layer attached to a metal plate by finite-difference time-domain analysis ," Plasma Sources Sci. Technol., Vol. 16, 614-618, 2007.
    doi:10.1088/0963-0252/16/3/022

    15. Zobdeh, P., R. Sadighi-Bonabi, H. Afarideh, E. Yazdani, and R. Rezaei Nasirabad, "Using the steepened plasma profile and wave breaking threshold in laser-plasma interaction," Contributions to Plasma Phys., Vol. 48, 555-560, 2008.
    doi:10.1002/ctpp.200810088

    16. Gurel, C. S. and E. Oncu, "Frequency selective characteristics of a plasma layer with sinusoidally varying electron density profile," Int. J. Infrared Millimeter Waves, Vol. 30, 589-597, 2009.

    17. Gurel, C. S. and E. Oncu, "Interaction of electromagnetic wave and plasma slab with partially linear and sinusoidal electron density profile ," Progress In Electromagnetics Research Letters, Vol. 12, 171-181, 2009.
    doi:10.2528/PIERL09061707

    18. Mirzaie, M., B. Shokri, and A. A. Rukhadze, "The reflection of an electromagnetic wave from the self-produced plasma," Physics of Plasmas, Vol. 1, No. 7, 012104-012104-6, 2010.
    doi:10.1063/1.3292654

    19. Gradov, O. M. and L. Stenflo, "On the parametric transparency of a magnetized plasma slab," Physics Letters, Vol. 83A, No. 6, 257-258, 1981.

    20. Gradov, O. M. and L. Stenflo, "Anomalous transmission of electromagnetic energy through a plasma slab," Physica Scripta, Vol. 25, No. 631, 1982.

    21. Kim, H. C. and J. P. Verboncoeur, "Reflection, absorption and transmission of TE electromagnetic waves propagation in a nonuniform plasma slab ," Computer Physics Communications, Vol. 177, 118-121, 2007.
    doi:10.1016/j.cpc.2007.02.056

    22. Huang, H., Y. Fan, B. Wu, F. Kong, and J. A. Kong, "Surface modes at the interfaces between isotropic media and uniaxial plasma ," Progress In Electromagnetics Research, Vol. 76, 1-14, 2007.
    doi:10.2528/PIER07062005

    23. Ma, L. X., H. Zhang, and C. X. Zhang, "Analysis on the reflection characteristics of electromagnetic wave incidence in closed non-magnetised plasma," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 17-18, 2285-2296, 2008.
    doi:10.1163/156939308787543877

    24. Yang, H., "Exponential FDTD for plasma dispersive medium," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 8-9, 1165-1172, 2008.
    doi:10.1163/156939308784158913

    25. Gao, H. M. and P. T. Fa, "Reflection of electromagnetic waves by a nonuniform plasma layer covering a metal surface," Chinese Physics Letters, Vol. 25, 2562-2565, 2008.

    26. Sternberg, N. and A. I. Smolyakov, "Resonant transparency of a three-layer structure containing the dense plasma region," Progress In Electromagnetics Research, Vol. 99, 37-52, 2009.
    doi:10.2528/PIER09091708

    27. Sternberg, N. and A. I. Smolyakov, "Resonant transparency of resonant transparency of a three-layer structure containing the dense plasma region," Progress In Electromagnetics Research, Vol. 99, 37-52, 2009.
    doi:10.2528/PIER09091708

    28. Sternberg, N. and A. I. Smolyakov, "Resonant transmission of electromagnetic waves in multilayer dense-plasma structures," IEEE Transactions on Plasma Science, Vol. 37, Part 2, 1251-1260, 2009.

    29. Ma, L.-X., H. Zhang, H.-X. Zheng, and C.-X. Zhang, "Shift-operator FDTD method for anisotropic plasma in Kdb coordinates system," Progress In Electromagnetics Research M.

    30. Ma, L.-X., H. Zhang, Z. Li, and C.-X. Zhang, "Analysis on the stealth characteristic of two dimensional cylinder plasma envelopes," Progress In Electromagnetics Research Letters, Vol. 13, 83-92, 2010.
    doi:10.2528/PIERL09100903

    31. Balanis, C. A., Advanced Electromagnetic Engineering, John Wiley and Sons, New York, 1989.