Vol. 34

Latest Volume
All Volumes
All Issues
2011-09-14

Metamaterial-Based Sensor Design Working in Infrared Frequency Range

By Luigi La Spada, Filiberto Bilotti, and Lucio Vegni
Progress In Electromagnetics Research B, Vol. 34, 205-223, 2011
doi:10.2528/PIERB11060303

Abstract

In this paper, we propose the design of high sensitivity and selectivity metamaterial-based biosensors operating in the THz regime. The proposed sensors consist of planar array of resonant metallic structures, whose frequency response is modified through the variation of the surrounding dielectric environment. We consider different resonator geometries, such as the squared, circular, asymmetrical, and omega ones, and the analysis of the biosensors is conducted through proper equivalent quasi-static analytical circuit models. The metallic particles are assumed deposited on a glass substrate through proper titanium adhesion layers. Exploiting the proposed analytical model, which is verified through the comparison to full-wave numerical simulations, we study the biosensor resonance frequencies as a function of the geometric parameters of the individual inclusions. Finally, we optimize the structure in order to obtain high sensitivity and selectivity performances. The numerical results show that the proposed structures can be successfully applied as biosensors working in the THz region.

Citation


Luigi La Spada, Filiberto Bilotti, and Lucio Vegni, "Metamaterial-Based Sensor Design Working in Infrared Frequency Range," Progress In Electromagnetics Research B, Vol. 34, 205-223, 2011.
doi:10.2528/PIERB11060303
http://test.jpier.org/PIERB/pier.php?paper=11060303

References


    1. Vo-Dinh, T. and L. Allain, "Biosensors for medical applications," Biomedical Photonics Handbook, CRC Press, 2003.
    doi:10.1201/9780203008997

    2. Hu, M., J. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. Li, M. Marquez, and Y. Xia, "Gold nanostructures: Engineering their plasmonic properties for biomedical applications," Chem. Soc. Rev., Vol. 35, 1084-1094, 2006.
    doi:10.1039/b517615h

    3. Salamon, Z., H. A. Macleod, and G. Tollin, "Surface plasmon resonance spectroscopy as a tool for investigating the biochemical and biophysical properties of membrane protein systems. I. Theoretical principles," Biochim. Biophys. Acta, Vol. 1331, 117-129, 1997.

    4. Lillie, J. J., M. A. Thomas, N. M. Jokerst, S. E. Ralph, K. A. Dennis, and C. L. Handerson, "Multimode interferometric sensors on silicon optimized for fully integrated complementary metal-oxide-semiconductor chemical-biological sensor systems," J. Opt. Soc. Am. B, Vol. 23, 642-651, 2006.
    doi:10.1364/JOSAB.23.000642

    5. Luo, D. H., R. A. Levy, Y. F. Hor, J. F. Federici, and R. M. Pafchek, "An integrated photonic sensor for in situ monitoring of hazardous organics," Sens. Actuators B, Vol. 92, 121-126, 2003.
    doi:10.1016/S0925-4005(03)00123-0

    6. Xia, F., L. Sekaric, and Y. A. Vlasov, "Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators," Opt. Expr., Vol. 14, 3872-3886, 2006.
    doi:10.1364/OE.14.003872

    7. Chao, C. Y. and L. J. Guo, "Biochemical sensors based on polymer microrings with sharp asymmetrical resonance," Appl. Phys. Lett., Vol. 83, 1527-1529, 2003.
    doi:10.1063/1.1605261

    8. Yalçin, A., K. C. Popat, J. C. Aldridge, T. A. Desai, J. Hryniewicz, N. Chbouki, B. E. Little, O. King, V. Van, S. Chu, D. Gill, M. Anthes-Washburn, M. Selim Unlu, and B. B. Goldberg, "Optical sensing of biomelecules using microring resonators," IEEE J. Selected Topics in Quantum Electronics, Vol. 12, 148-155, 2006.
    doi:10.1109/JSTQE.2005.863003

    9. Wongkasem, N., A. Akyurtlu, J. Li, A. Tibolt, Z. Kang, and W. D. Goodhue, "Novel broadband terahertz negative refractive index metamaterials: Analysis and experiment," Progress In Electromagnetics Research, Vol. 64, 205-218, 2006.
    doi:10.2528/PIER06071104

    10. Ishimaru, A., S. Jaruwatanadilok, and Y. Kuga, "Generalized surface plasmon resonance sensors using metamaterials and negative index materials," Progress In Electromagnetics Research, Vol. 51, 139-152, 2005.
    doi:10.2528/PIER04020603

    11. Cai, M. and E. P. Li, "A novel terahertz sensing device comprising of a parabolic reflective surface and a bi-conical structure," Progress In Electromagnetics Research, Vol. 97, 61-73, 2009.
    doi:10.2528/PIER09090902

    12. Bilotti, F., A. Toscano, L. Vegni, K. Aydin, K. B. Alici, and E. Ozbay, "Equivalent-circuit models for the design of metamaterials based on artificial magnetic inclusions," IEEE Trans. Microw. Theory Tech., Vol. 55, 2865-2873, 2007.
    doi:10.1109/TMTT.2007.909611

    13. Bilotti, F., A. Toscano, and L. Vegni, "Design of spiral and multiple split-ring resonators for the realization of miniaturized metamaterial samples," IEEE Trans. Antennas Propag., Vol. 55, 2258-2267, 2007.
    doi:10.1109/TAP.2007.901950

    14. Tretyakov, S. A., "On geometrical scaling of split-ring and double-bar resonators at optical frequencies," Metamaterials, Vol. 1, 140-143, 2007.
    doi:10.1016/j.metmat.2007.02.004

    15. Buoeno, M. A. and A. K. T. Assis, "A new method for inductance calculations," J. Phys. D: Appl. Phys., Vol. 28, 1802-1806, 1995.
    doi:10.1088/0022-3727/28/9/007

    16. Delgado, V., O. Sydoruk, E. Tatartschuk, R. Marqués, M. J. Freire, and L. Jelinek, "Analytical circuit model for split ring resonators in the far infrared and optical frequency range," Metamaterials, Vol. 3, 57-62, 2009.
    doi:10.1016/j.metmat.2009.03.001

    17. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. J. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Trans. Microw. Theory Tech., Vol. 47, 2075-2081, 1999.
    doi:10.1109/22.798002

    18. Tretyakov, S. A., F. Mariotte, C. R. Simovski, T. G. Kharina, and J. P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Trans. Antennas Propag., Vol. 44, 1006-1014, 1996.
    doi:10.1109/8.504309

    19. Simovski, C. R., S. A. Tretyakov, A. A. Sochava, B. Sauviac, F. Mariotte, and T. G. Kharina, "Antenna model for conductive omega particles," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 11, 1509-1530, 1997.
    doi:10.1163/156939397X00567

    20. Casse, B. D. F., H. O. Moser, O. Wilhelmi, and B. T. Saw, "Micro- and nano-fabrication of electromagnetic metamaterials for the terahertz range," Proceedings of the ICMAT 2005 Symposium, Vol. 18, No. 25, 2005.

    21. CST Computer Simulation Technology, www.cst.com.

    22. Chen, C.-Y., I.-W. Un, N.-H. Tai, and T.-J. Ye, "Asymmetric coupling between subradiant and superradiant plasmonic resonances and its enhanced sensing performance," Opt. Expr., Vol. 17, 15372-15380, 2009.
    doi:10.1364/OE.17.015372