Vol. 34

Latest Volume
All Volumes
All Issues

Enhanced Polarization in Tadpole-Shaped (Ni, Al)/AlN Nanoparticles and Microwave Absorption at High Frequencies

By Hao Huang, Fang Hong Xue, Bo Lu, Fei Wang, Xing Dong, and Won Jo Park
Progress In Electromagnetics Research B, Vol. 34, 31-46, 2011


Tadpole-shaped (Ni, Al)/AlN nanoparticles were synthesized via evaporating Ni-Al alloy in a mixed atmosphere of N2 and H2. As a counterpart, the spherical-shaped (Ni, Al)/Al2O3 The electromagnetic parameters of as-made nanoparticles/paraffin composites were then investigated in the frequency range of 2-18 GHz. Excellent microwave absorption can be obtained for the tadpole-shaped (Ni, Al)/AlN-paraffin composite at high frequencies and in a thin layer, which is thought to be the result of the enhanced polarization in the anisotropic tadpole-shaped nanoparticles. With the increasing of the composite thickness, the frequency of effective reflection loss shifts towards lower frequencies due to an improved impedance match and absorption.


Hao Huang, Fang Hong Xue, Bo Lu, Fei Wang, Xing Dong, and Won Jo Park, "Enhanced Polarization in Tadpole-Shaped (Ni, Al)/AlN Nanoparticles and Microwave Absorption at High Frequencies," Progress In Electromagnetics Research B, Vol. 34, 31-46, 2011.


    1. Wallace, J. L., "Broadband magnetic microwave absorbers: Fundamental limitations," IEEE Trans. Magn., Vol. 29, 4209-4214, 1993.

    2. Liu, X. G., D. Y. Geng, H. Meng, P. J. Shang, and Z. D. Zhang, "Microwave-absorption properties of ZnO-coated iron nanocapsules," Appl. Phys. Lett., Vol. 92, 173117, 2008.

    3. Zhen, L., Y. X. Gong, J. T. Jiang, C. Y. Xu, W. Z. Shao, P. Liu, and J. Tang, "Synthesis of CoFe/Al2O3 composite nanoparticles as he impedance matching layer of wideband multilayer absorber," J. Appl. Phys., Vol. 109, 07A332, 2011.

    4. Che, R. C., L. M. Peng, X. F. Duan, Q. Chen, and X. L. Liang, "Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes," Adv. Mater., Vol. 16, 401-405, 2004.

    5. Bayrakdar, H., "Complex permittivity, complex permeability and microwave absorption properties of ferrite-paraffin polymer composites," J. Magn. Magn. Mater., Vol. 323, 1882-1885, 2011.

    6. Rajesh, S., V. S. Nisa, K. P. Murali, and R. Ratheesh, "Microwave dielectric properties of PTFE/rutile nanocomposites," J. Alloys Compd., Vol. 477, 677-682, 2009.

    7. Kim, J. H. and S. S. Kim, "Microwave absorbing properties of Agcoated Ni-Zn ferrite microspheres prepared by electroless plating," J. Alloys Compd., Vol. 509, 4399-4403, 2011.

    8. Paula, R. K., K. H. Leeb, B. T. Lee, and H. Y. Song, "Formation of AlN nanowires using Al powder," Mater. Chem. Phys., Vol. 112, 562-565, 2008.

    9. Ambacher, O., "Growth and applications of group III-nitrides," J. Phys. D: Appl. Phys., Vol. 31, 2653-2710, 1998.

    10. Yin, L. W., Y. Bando, Y. C. Zhu, M. S. Li, Y. B. Li, and D. Golberg, "Growth and field emission of hierarchical single-crystalline wurtzite AlN nanoarchitectures," Adv. Mater., Vol. 17, 110-114, 2005.

    11. Liu, C., Z. Hu, Q. Wu, X. Z. Wang, Y. Chen, H. Sang, J. M. Zhu, S. Z. Deng, and N. S. Xu, "Vapor-solid growth and characterization of aluminum nitride nanocones," J. Am. Chem. Soc., Vol. 127, 1318-1322, 2005.

    12. Shen, L. H., T. M. Cheng, L. J. Wu, X. F. Li, and Q. L. Cui, "Synthesis and optical properties of aluminum nitride nanowires prepared by arc discharge method," J. Alloys Compd., Vol. 465, 562-566, 2008.

    13. González, M. and A. Ibarra, "The dielectric behaviour of commercial polycrystalline aluminium nitride," Diamond Relat. Mater., Vol. 9, 467-471, 2000.

    14. Mikijelj, B., D. K. Abe, and R. Hutcheon, "AlN-based lossy ceramics for high average power microwave devices: Performance-property correlation," J. Eur. Ceram. Soc., Vol. 23, 2705-2709, 2003.

    15. Dong, X. L., Z. D. Zhang, X. G. Zhao, Y. C. Chuang, S. R. Jin, and W. M. Sun, "Characterization of Fe-Ni(C) nanocapsules synthesized by arc discharge in methane," J. Mater. Res., Vol. 14, 1782-1790, 1999.

    16. Yusoff, A. N., M. H. Abdullah, S. H. Ahmad, S. F. Jusoh, A. A. Mansor, and S. A. A. Hamid, "Electromagnetic and absorption properties of some microwave absorbers," J. Appl. Phys., Vol. 92, 876-882, 2002.

    17. Thapa, R., B. Saha, and K. K. Chattopadhyay, "Synthesis of cubic aluminum nitride by VLS technique using gold chloride as a catalyst and its optical and field emission properties," J. Alloys Compd., Vol. 475, 373-377, 2009.

    18. Joo, H. U., B. K. Min, and W. S. Jung, "Characteristics of aluminum nitride nanowhiskers grown via the vapor-liquid-solid mechanism," Physica E, Vol. 40, 833-835, 2008.

    19. Petrov, I., E. Mojab, R. C. Powell, and J. E. Greene, "Synthesis metastable epitaxial zinc-blende-structure AlN by solid-state reaction," Appl. Phys. Lett., Vol. 60, 2491-2493, 1992.

    20. Wehner, A., Y. Jeliazova, and R. Franchy, "Growth and oxidation of a Ni3Al alloy on Ni(1 0 0)," Surf Sci., Vol. 531, 287-294, 2003.

    21. Berzina, B., L. Trinkler, D. Jakimovica, V. Korsaks, J. Grabis, I. Steins, E. Palcevskis, S. Bellucci, L. C. Chen, S. Chattopadhyay, and K. H. Chen, "Spectral characterization of bulk and nanostructured aluminum nitride," J. Nanophoton., Vol. 3, 031950, 2009.

    22. Youngman, R. A. and J. H. Harris, "Luminescence studies of oxygen-related defects in aluminum nitride," J. Am. Ceram. Soc., Vol. 73, 3238-3246, 1990.

    23. Lu, B., X. L. Dong, H. Huang, X. F. Zhang, X. G. Zhu, J. P. Lei, and J. P. Sun, "Microwave absorption properties of the core/shell-type iron and nickel nanoparticles," J. Magn. Magn. Mater., Vol. 320, 1106-1111, 2008.

    24. Gong, Y. X., L. Zhen, J. T. Jiang, C. Y. Xu, and W. Z. Shao, "Preparation of CoFe alloy nanoparticles with tunable electromagnetic wave absorption performance," J. Magn. Magn. Mater., Vol. 321, 3702-3705, 2009.

    25. Yan, S. J., L. Zhen, C. Y. Xu, J. T. Jiang, and W. Z. Shao, "Microwave absorption properties of FeNi3 submicrometre spheres and SiO2@FeNi3 core-shell structures," J. Phys. D: Appl. Phys., Vol. 43, 245003, 2010.

    26. Banerjee, R., P. Ayyub, G. B. Thompson, R. Chandra, P. Taneja, and H. L. Fraser, "Microstructure and magnetic, transport, and optical properties of ordered and disordered Ni-25Al alloy thin films," Thin Solid Films, Vol. 441, 255-260, 2003.

    27. He, J. H., R. Yang, Y. L. Chueh, L. J. Chou, L. J. Chen, and Z. L. Wang, "Aligned AlN nanorods with multi-tipped surfaces --- Growth, field-emission, and cathodoluminescence properties," Adv. Mater., Vol. 18, 650-654, 2006.

    28. Michaelson, H. B., "The work function of the elements and its periodicity," J. Appl. Phys., Vol. 48, 4729-4733, 1977.

    29. Chew, W. C. and P. N. Sen, "Dielectric enhancement due to electrochemical double layer: Thin double layer approximation," J. Chem. Phys., Vol. 77, 4683-4693, 1982.

    30. Muñoz, R. D., A. L. Shluger, and G. Bersuker, "Ab initio study of charge trapping and dielectric properties of Ti-doped HfO2," Phys. Rev. B, Vol. 79, 035306, 2009.

    31. Kasu, M. and N. Kobayashi, "Large and stable field-emission current from heavily Si-doped AlN grown by metalorganic vapor phase epitaxy," Appl. Phys. Lett., Vol. 76, 2910-2912, 2000.

    32. Ravindran, R., K. Gangopadhyay, S. Gangopadhyay, N. Mehta, and N. Biswas, "Permittivity enhancement of aluminum oxide thin films with the addition of silver nanoparticles," Appl. Phys. Lett., Vol. 89, 263511, 2006.

    33. Thakur, A., P. Thakur, and J. H. Hsu, "Novel magnetodielectric nanomaterials with matching permeability and permittivity for the very-high-frequency applications," Scripta. Mater., Vol. 64, 205-208, 2011.

    34. Zhao, H. and H. H. Baua, "The polarization of a nanoparticle surrounded by a thick electric double layer," J. Colloid Interf. Sci., Vol. 333, 663-671, 2009.

    35. Zhou, R. H., H. C. Changa, V. Protasenko, M. Kuno, A. K. Singh, D. Jena, and H. L. Xing, "CdSe nanowires with illumination-enhanced conductivity: Induced dipoles, dielectrophoretic assembly, and field-sensitive emission," J. Appl. Phys., Vol. 101, 73704, 2007.

    36. Seo, D.-W., H.-J. Kim, K.-U Bae, and N.-H. Myung, "The effect of fiber orientation distribution on the effective permittivity of fiber composite materials," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 17--18, 2419-2430, 2010.

    37. Chen, Y. J., F. Zhang, G. G. Zhao, X. Y. Fang, H. B. Jin, P. Gao, C. L. Zhu, M. S. Cao, and G. Xiao, "Synthesis, multi-nonlinear dielectric resonance, and excellent electromagnetic absorption characteristics of Fe3O4/ZnO core/shell nanorods," J. Phys. Chem. C, Vol. 114, 9239-9244, 2010.

    38. Wu, M. Z., Y. D. Zhang, S. Hui, T. D. Xiao, S. H. Ge, W. A. Hines, J. I. Budnick, and G. W. Taylor, "Microwave magnetic properties of Co50/(SiO2)50 nanoparticles," Appl. Phys. Lett., Vol. 80, 4404-4406, 2002.

    39. Mercier, D., J.-C. S. Lévy, G. Viau, F. Fiévet-Vincent, F. Fiévet, P. Toneguzzo, and O. Acher, "Magnetic resonance in spherical Co-Ni and Fe-Co-Ni particles," Phys. Rev. B, Vol. 62, 532-544, 2000.

    40. Naito, Y. and K. Suetake, "Application of ferrite to electromagnetic wave absorber and its characteristics," IEEE T. Microw. Theory, Vol. 19, 65-72, 1971.

    41. Inui, T., K. Konishi, and K. Oda, "Fabrications of broad-band RF-absorber composed of planar hexagonal ferrites," IEEE T. Magn., Vol. 35, 3148-3150, 1999.

    42. Micheli, D., R. Pastore, C. Apollo, M. Marchetti, G. Gradoni, V. M. Primiani, and F. Moglie, "Broadband electromagnetic absorbers using carbon nanostructure-based composites," IEEE T. Microw. Theory, 2011, Doi: 10.1109/TMTT.2011.2160198.