Vol. 52

Latest Volume
All Volumes
All Issues
2013-06-06

Compact-Like Pulse Signals in a New Nonlinear Electrical Transmission Line

By Desire Ndjanfang, David Yemele, Patrick Marquie, and Timoleon Crepin Kofane
Progress In Electromagnetics Research B, Vol. 52, 207-236, 2013
doi:10.2528/PIERB13030207

Abstract

A nonlinear electrical transmission line with an intersite circuit element acting as a nonlinear resistance is introduced and investigated. In the continuum limit, the dynamics of localized signals is described by a non-linear evolution equation belonging to the family of nonlinear diffusive Burgers' equations. This equation admits compact pulse solutions and shares some symmetry properties with the Rosenau-Hyman K(2,2) equation. An exact discrete compactly-supported signal voltage is found for the network and the dissipative effects on the pulse motion analytically studied. Numerical simulations confirm the validity of analytical results and the robustness of these compact pulse signals which may have important applications in signal processing systems.

Citation


Desire Ndjanfang, David Yemele, Patrick Marquie, and Timoleon Crepin Kofane, "Compact-Like Pulse Signals in a New Nonlinear Electrical Transmission Line," Progress In Electromagnetics Research B, Vol. 52, 207-236, 2013.
doi:10.2528/PIERB13030207
http://test.jpier.org/PIERB/pier.php?paper=13030207

References


    1. Rosenau, P. and J. M. Hyman, "Compactons: Solitons with finites wavelength," Phys. Rev. Lett., Vol. 70, 564-567, 1993.
    doi:10.1103/PhysRevLett.70.564

    2. Remoissenet, M., Waves Called Solitons, 3rd Ed., Springer-Verlag, Berlin, 1999.
    doi:10.1007/978-3-662-03790-4

    3. Rosenau, P. and E. Kashdan, "Compactification of nonlinear patterns and waves," Phys. Rev. Lett., Vol. 101, 264101-264105, 2008.
    doi:10.1103/PhysRevLett.101.264101

    4. Destrade, M., G. Gaeta, and G. Saccomandi, "Weierstrasss criterion and compact solitary waves," Phys. Rev. E, Vol. 75, 047601-047605, 2007.
    doi:10.1103/PhysRevE.75.047601

    5. Gaeta, G., T. Gramchev, and S. Walcher, "Compact solitary waves in linearly elastic chains with non-smooth on-site potential," J. Phys. A: Math. Theor., Vol. 40, 4493-4509, 2007.
    doi:10.1088/1751-8113/40/17/007

    6. Rosenau, P., "On compactification of patterns by a singular convection or stress," Phys. Rev. Lett., Vol. 99, 234102-234107, 2007.
    doi:10.1103/PhysRevLett.99.234102

    7. Kivshar, Y. S., "Intrinsic localized modes as solitons with a compact support," Phys. Rev. E , Vol. 48, 43-45, 1993.
    doi:10.1103/PhysRevE.48.R43

    8. Kevrekidis, P. G., V. V. Konotop, A. R. Bishop, and S. Takeno, "Discrete compactons: Some exact resuts," J. Phys. A: Math. Gen. , Vol. 35, 641-652, 2002.
    doi:10.1088/0305-4470/35/45/103

    9. Dusuel, S., P. Michaux, and M. Remoissenet, "From kinks to compacton like kinks," Phys. Rev. E, Vol. 57, 2320-2326, 1998.
    doi:10.1103/PhysRevE.57.2320

    10. Ludu, A. and J. P. Draayer, "Patterns on liquid surfaces cnoidal waves, compactons and scaling," Physica D, Vol. 123, 82-91, 1998.
    doi:10.1016/S0167-2789(98)00113-4

    11. Grimshaw, R. H. J., L. A. Ostrovsky, V. I. Shrira, and Y. A. Stepanyants, "Long nonlinear surface and internal gravity waves in a rotating ocean ," Surv. Geophys. , Vol. 19, 289-338, 1998.
    doi:10.1023/A:1006587919935

    12. Takeno, S., "Compacton-like modes in model DNA systems and their bearing on biological functioning," Phys. Lett. A, Vol. 339, 352-360, 2005.
    doi:10.1016/j.physleta.2005.01.081

    13. Rosenau, P. and A. Pikovsky, "Phase compactons in chains of dispersively coupled oscillators," Phys. Rev. Lett., Vol. 94, 174102-174106, 2005.
    doi:10.1103/PhysRevLett.94.174102

    14. Pikovsky, A. and P. Rosenau, "Phase compactons," Physica D, Vol. 218, 56-69, 2006.
    doi:10.1016/j.physd.2006.04.015

    15. Takahashi, D. and J. Satsuma, "Explicit solutions of magma equation," J. Phys. Soc. Jpn., Vol. 57, 417-421, 1988.
    doi:10.1143/JPSJ.57.417

    16. Simpson, G., M. I. Weinstein, and P. Rosenau, "On a hamiltonian PDE arising in magma dynamics," Disc. and Cont. Dynamical Systems B, Vol. 10, 903-924, 2008.
    doi:10.3934/dcdsb.2008.10.903

    17. Gharakhili, F. G., M. Shahabadi, and M. Hakkak, "Bright and dark soliton generation in a left-handed nonlinear transmission line with series ," Progress In Electromagnetics Research, Vol. 96, 237-249, 2009.
    doi:10.2528/PIER09080106

    18. Afshari, E., H. S. Bhat, A. Hajimiri, and J. E. Marsden, "Extremely wideband signal shaping using one and two dimensional nonuniform nonlinear line ," J. Appl. Phys., Vol. 99, 054901-054917, 2006.
    doi:10.1063/1.2174126

    19. Narahara, , K. and M. Nakamura, "Compensation of polarization mode dispersion with electrical nonlinear transmission lines," Jpn. J. Appl. Phys., Vol. 42, 6327-6334, 2003.
    doi:10.1143/JJAP.42.6327

    20. Narahara, K., "Coupled nonlinear transmission lines for doubling repetition rate of incident pulse streams," Progress In Electromagnetics Research Letters , Vol. 16, 69-78, 2010.
    doi:10.2528/PIERL10070106

    21. Narahara, K., "Characterization of partially nonlinear transmission lines for ultrashort-pulse amplification," Jpn. J. Appl. Phys., Vol. 42, 5508-5515, 2003.
    doi:10.1143/JJAP.42.5508

    22. Comte, J. C. and P. Marquie, "Compact-like kink in real electrical eaction-diffusion chain," Chaos, Soliton, Fractals, Vol. 29, 307-312, 2006.
    doi:10.1016/j.chaos.2005.08.212

    23. Yemele, D. and F. Kenmogne, "Compact envelope dark solitary wave in a discrete nonlinear electrical transmission line," Phys. Lett. A, Vol. 373, 3801-3809, 2009.
    doi:10.1016/j.physleta.2009.08.067

    24. Kenmogne, F. and D. Yemele, "Exotic modulated signals in a nonlinear electrical transmission line: Modulated peak solitary wave and gray compacton," Chaos, Solitons, Fractals, Vol. 45, 21-34, 2012.
    doi:10.1016/j.chaos.2011.09.009

    25. English, L. Q., R. Basu Thakur, and R. Stearrett, "Patterns of travelling intrinsic localized modes in a driven electrical lattice," Phys. Rev. E, Vol. 77, 066601-066605, 2008.
    doi:10.1103/PhysRevE.77.066601

    26. Marquie, P., S. Binczak, J. C. Comte, B. Michaux, and J. M. Bilbault, "Diffusion effects in a nonlinear electrical lattice," Phys. Rev. E, Vol. 57, 6075-6078, 1998.
    doi:10.1103/PhysRevE.57.6075

    27. Comte, J. C., P. Marquie, J. M. Bilbault, and S. Binczak, "Noise removal using a nonlinear two-dimensional diffusion network," Ann. Telecommun., Vol. 53, 483-487, 1998.

    28. Nguena, H. K., S. Noubissi, and P.Woafo, "Waves amplification in nonlinear transmission lines using negative nonlinear resistance," J. Phys. Soc. Jpn., Vol. 73, 1147-1150, 2004.
    doi:10.1143/JPSJ.73.1147

    29. Ndzana, F., A. Mohamadou, and T. C. Kofane, "Modulated waves and chaotic-like behaviours in the discrete electrical line," J. Phys. D: Appl. Phys., Vol. 40, 3254-3262, 2007.
    doi:10.1088/0022-3727/40/10/035

    30. Binzak, S., J. C. Comte, B. Michaux, P. Marquie, and and, "Experimental nonlinear electrical reactiondiffusion lattice," Electron. Lett., Vol. 34, 1061-1062, 1998.
    doi:10.1049/el:19980774

    31. Saccomandi, G. and I. Sgura, "The relevance of nonlinear stacking interactions in simple models of double-stranded DNA," J. R. Soc. Interface, Vol. 3, 655-667, 2006.
    doi:10.1098/rsif.2006.0126

    32. Nguetcho, A. S., J. R. Bogning, D. Yemele, and T. C. Kofane, "Kink compactons in models with parametrized periodic double-well and asymmetric substrate potentials," Chaos, Solitons Fractals, Vol. 21, 165-176, 2004.
    doi:10.1016/j.chaos.2003.10.034