Vol. 52

Latest Volume
All Volumes
All Issues

Compact-Like Pulse Signals in a New Nonlinear Electrical Transmission Line

By Desire Ndjanfang, David Yemele, Patrick Marquie, and Timoleon Crepin Kofane
Progress In Electromagnetics Research B, Vol. 52, 207-236, 2013


A nonlinear electrical transmission line with an intersite circuit element acting as a nonlinear resistance is introduced and investigated. In the continuum limit, the dynamics of localized signals is described by a non-linear evolution equation belonging to the family of nonlinear diffusive Burgers' equations. This equation admits compact pulse solutions and shares some symmetry properties with the Rosenau-Hyman K(2,2) equation. An exact discrete compactly-supported signal voltage is found for the network and the dissipative effects on the pulse motion analytically studied. Numerical simulations confirm the validity of analytical results and the robustness of these compact pulse signals which may have important applications in signal processing systems.


Desire Ndjanfang, David Yemele, Patrick Marquie, and Timoleon Crepin Kofane, "Compact-Like Pulse Signals in a New Nonlinear Electrical Transmission Line," Progress In Electromagnetics Research B, Vol. 52, 207-236, 2013.


    1. Rosenau, P. and J. M. Hyman, "Compactons: Solitons with finites wavelength," Phys. Rev. Lett., Vol. 70, 564-567, 1993.

    2. Remoissenet, M., Waves Called Solitons, 3rd Ed., Springer-Verlag, Berlin, 1999.

    3. Rosenau, P. and E. Kashdan, "Compactification of nonlinear patterns and waves," Phys. Rev. Lett., Vol. 101, 264101-264105, 2008.

    4. Destrade, M., G. Gaeta, and G. Saccomandi, "Weierstrasss criterion and compact solitary waves," Phys. Rev. E, Vol. 75, 047601-047605, 2007.

    5. Gaeta, G., T. Gramchev, and S. Walcher, "Compact solitary waves in linearly elastic chains with non-smooth on-site potential," J. Phys. A: Math. Theor., Vol. 40, 4493-4509, 2007.

    6. Rosenau, P., "On compactification of patterns by a singular convection or stress," Phys. Rev. Lett., Vol. 99, 234102-234107, 2007.

    7. Kivshar, Y. S., "Intrinsic localized modes as solitons with a compact support," Phys. Rev. E , Vol. 48, 43-45, 1993.

    8. Kevrekidis, P. G., V. V. Konotop, A. R. Bishop, and S. Takeno, "Discrete compactons: Some exact resuts," J. Phys. A: Math. Gen. , Vol. 35, 641-652, 2002.

    9. Dusuel, S., P. Michaux, and M. Remoissenet, "From kinks to compacton like kinks," Phys. Rev. E, Vol. 57, 2320-2326, 1998.

    10. Ludu, A. and J. P. Draayer, "Patterns on liquid surfaces cnoidal waves, compactons and scaling," Physica D, Vol. 123, 82-91, 1998.

    11. Grimshaw, R. H. J., L. A. Ostrovsky, V. I. Shrira, and Y. A. Stepanyants, "Long nonlinear surface and internal gravity waves in a rotating ocean ," Surv. Geophys. , Vol. 19, 289-338, 1998.

    12. Takeno, S., "Compacton-like modes in model DNA systems and their bearing on biological functioning," Phys. Lett. A, Vol. 339, 352-360, 2005.

    13. Rosenau, P. and A. Pikovsky, "Phase compactons in chains of dispersively coupled oscillators," Phys. Rev. Lett., Vol. 94, 174102-174106, 2005.

    14. Pikovsky, A. and P. Rosenau, "Phase compactons," Physica D, Vol. 218, 56-69, 2006.

    15. Takahashi, D. and J. Satsuma, "Explicit solutions of magma equation," J. Phys. Soc. Jpn., Vol. 57, 417-421, 1988.

    16. Simpson, G., M. I. Weinstein, and P. Rosenau, "On a hamiltonian PDE arising in magma dynamics," Disc. and Cont. Dynamical Systems B, Vol. 10, 903-924, 2008.

    17. Gharakhili, F. G., M. Shahabadi, and M. Hakkak, "Bright and dark soliton generation in a left-handed nonlinear transmission line with series ," Progress In Electromagnetics Research, Vol. 96, 237-249, 2009.

    18. Afshari, E., H. S. Bhat, A. Hajimiri, and J. E. Marsden, "Extremely wideband signal shaping using one and two dimensional nonuniform nonlinear line ," J. Appl. Phys., Vol. 99, 054901-054917, 2006.

    19. Narahara, , K. and M. Nakamura, "Compensation of polarization mode dispersion with electrical nonlinear transmission lines," Jpn. J. Appl. Phys., Vol. 42, 6327-6334, 2003.

    20. Narahara, K., "Coupled nonlinear transmission lines for doubling repetition rate of incident pulse streams," Progress In Electromagnetics Research Letters , Vol. 16, 69-78, 2010.

    21. Narahara, K., "Characterization of partially nonlinear transmission lines for ultrashort-pulse amplification," Jpn. J. Appl. Phys., Vol. 42, 5508-5515, 2003.

    22. Comte, J. C. and P. Marquie, "Compact-like kink in real electrical eaction-diffusion chain," Chaos, Soliton, Fractals, Vol. 29, 307-312, 2006.

    23. Yemele, D. and F. Kenmogne, "Compact envelope dark solitary wave in a discrete nonlinear electrical transmission line," Phys. Lett. A, Vol. 373, 3801-3809, 2009.

    24. Kenmogne, F. and D. Yemele, "Exotic modulated signals in a nonlinear electrical transmission line: Modulated peak solitary wave and gray compacton," Chaos, Solitons, Fractals, Vol. 45, 21-34, 2012.

    25. English, L. Q., R. Basu Thakur, and R. Stearrett, "Patterns of travelling intrinsic localized modes in a driven electrical lattice," Phys. Rev. E, Vol. 77, 066601-066605, 2008.

    26. Marquie, P., S. Binczak, J. C. Comte, B. Michaux, and J. M. Bilbault, "Diffusion effects in a nonlinear electrical lattice," Phys. Rev. E, Vol. 57, 6075-6078, 1998.

    27. Comte, J. C., P. Marquie, J. M. Bilbault, and S. Binczak, "Noise removal using a nonlinear two-dimensional diffusion network," Ann. Telecommun., Vol. 53, 483-487, 1998.

    28. Nguena, H. K., S. Noubissi, and P.Woafo, "Waves amplification in nonlinear transmission lines using negative nonlinear resistance," J. Phys. Soc. Jpn., Vol. 73, 1147-1150, 2004.

    29. Ndzana, F., A. Mohamadou, and T. C. Kofane, "Modulated waves and chaotic-like behaviours in the discrete electrical line," J. Phys. D: Appl. Phys., Vol. 40, 3254-3262, 2007.

    30. Binzak, S., J. C. Comte, B. Michaux, P. Marquie, and and, "Experimental nonlinear electrical reactiondiffusion lattice," Electron. Lett., Vol. 34, 1061-1062, 1998.

    31. Saccomandi, G. and I. Sgura, "The relevance of nonlinear stacking interactions in simple models of double-stranded DNA," J. R. Soc. Interface, Vol. 3, 655-667, 2006.

    32. Nguetcho, A. S., J. R. Bogning, D. Yemele, and T. C. Kofane, "Kink compactons in models with parametrized periodic double-well and asymmetric substrate potentials," Chaos, Solitons Fractals, Vol. 21, 165-176, 2004.