Focusing of electromagnetic plane wave from a large paraboloidal reflector, composed of layers of chiral and/or chiral nihility metamaterials, has been studied using Maslov's method. As a first step, the transmission and reflection of electromagnetic plane wave from two parallel layers of chiral and/or chiral nihility metamaterials are investigated using transfer matrix method. The effects of change of angle of incidence, chirality parameters and impedances of layers are noted and discussed. Special cases by taking extreme values of permittivity of second layer, while assuming value of corresponding chirality equal to zero, are also obtained for validating the methodology. These special cases are equivalent to reflection from a perfect electric conductor backed chiral layer and nihility backed chiral layer, respectively. Results of reflection from parallel layers have been utilized to study focusing from a large paraboloidal reflector. The present study, on focusing from a paraboloidal reflector, not only unifies already published work by various researchers but also provides better understanding of the problem.
2. Biot, J. B., "Phenomenes de polarisation successive, observs dans des fluides homogenes," Bull. Soc. Philomath., 190-192, 1815.
3. Fresnel, A., "Memoire sur la double refraction que les rayons lumineux eprouvent en traversant les aiguilles de cristal de roche suivant des directions paralleles a l'axe," Oeuvres, Vol. 1, 731-751, 1822.
4. Biot, J. B., "Memoire sur la polarisation circulaire et sur ses applications a la chimie organique," Mem. Acad. Sci., Vol. 13, 39-175, 1835.
5. Lindman, K. F., "Ober eine durch ein isotropes system von spiralformigen resonatoren erzeugte rotationspolarisation der elektromagnetischen wellen," Ann. Phys., Vol. 63, 621-644, 1920.
doi:10.1002/andp.19203682303
6. Lindman, K. F., "Uber die durch ein aktives raumgitter erzeugte rotationspolarisation der elektromagnetischen wellen," Ann. Phys., Vol. 69, 270-284, 1922.
doi:10.1002/andp.19223742004
7. Jaggard, D. L., A. R. Mickelson, and C. H. Papas, "On electromagnetic waves in chiral media," Appl. Phys., Vol. 18, 211-216, 1979.
doi:10.1007/BF00934418
8. Lindell, I. V., A. H. Sihvola, S. A. Tretyakov, and A. J. Viitanen, Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, Boston, 1994.
9. Bassiri, S., C. H. Papas, and N. Engheta, "Electromagnetic wave propagation through a dielectric-chiral interface and through a chiral slab," J. Opt. Soc. of Am. A, Vol. 5, 1450-1459, 1988.
doi:10.1364/JOSAA.5.001450
10. Lakhtakia, A., Beltrami Fields in Chiral Media, World Scientific, Singapore, 1994.
11. Lamb, H., On group-velocity, Proc. London Math. Soc., Vol. 1, 473-479, 1904.
12. Schuster, A. and An Introduction to the Theory of Optics, , Edward Arnold, London, 1904.
13. Pocklington, H. C., "Growth of a wave-group when the group velocity is negative," Nature, Vol. 71, 607-608, 1905.
doi:10.1038/071607b0
14. Malyuzhinets, G. D., "A note on the radiation principle," Zh. Tekh. Fiz., Vol. 21, 940-942, 1951.
15. Sivukhin, D. V., "The energy of electromagnetic waves in dispersive media," Opt. Spektrosk., Vol. 3, 308-312, 1957.
16. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Sov. Phys. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699
17. Qiu, C. W., H. Y. Yao, S. Zouhdi, L. W. Li, and M. S. Leong, "On the constitutive relations of G-chiral media and the possibility to realize negative-index media," Microwave Opt. Technol. Lett., Vol. 48, 2534-2538, 2006.
doi:10.1002/mop.21981
18. Tretyakov, S., A. Sihvola, and L. Jylh, "Backward-wave regime and negative refraction in chiral composites," Photonics Nanostruct. Fundam. Appl., Vol. 3, 107-115, 2005.
doi:10.1016/j.photonics.2005.09.008
19. Pendry, J. B., A. J. Holden, W. J. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, 4773-4776, 1996.
doi:10.1103/PhysRevLett.76.4773
20. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.
doi:10.1126/science.1104467
21. Qiu, C. W., H. Y. Yao, L. W. Li, S. Zouhdi, and T. S. Yeo, "Routes to left-handed materials by magnetoelectric couplings," Phys. Rev. B, Vol. 75, 245214, 2007.
doi:10.1103/PhysRevB.75.245214
22. Zhang, S., Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Phys. Rev. Lett., Vol. 102, 023901, 2009.
doi:10.1103/PhysRevLett.102.023901
23. Mackay, T. G. and A. Lakhtakia, "Simultaneous negative- and positive-phase-velocity propagation in an isotropic chiral medium," Microwave Opt. Technol. Lett., Vol. 49, 1245-1246, 2007.
doi:10.1002/mop.22434
24. Lakhtakia, A., "An electromagnetic trinity from negative permittivity and negative permeability," Int. J. Inf. and Mil. Wav., Vol. 22, 1731-1734, 2001.
doi:10.1023/A:1015068715023
25. Tretyakov, S., I. Nefedov, A. H. Sihvola, S. Maslovki, and C. Simovski, "Waves and energy in chiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
doi:10.1163/156939303322226356
26. Naqvi, Q. A., "Planar slab of chiral nihility metamaterial backed by fractional dual/PEMC interface," Progress In Electromagnetics Research, Vol. 85, 381-391, 2008.
doi:10.2528/PIER08081201
27. Baqir, M. A., A. A. Syed, and Q. A. Naqvi, "Electromagnetic fields in a circular waveguide containing chiral nihility metamaterial," Progress In Electromagnetics Research M, Vol. 16, 85-93, 2011.
28. Balanis, C. A., Advanced Engineering Electromagnetics, 2nd Ed., John Willey and Sons, 2012.
29. Cheng, D. K., Fields and Wave Electromagnetics, Addison-Wesley, New York, 1989.
30. Qiu, C. W., N. Burokur, S. Zouhdi, and L. W. Li, "Chiral nihility effects on energy flow in chiral materials," J. Opt. Soc. of Am., Vol. 25, 55-63, 2008.
31. Ahmad, F., S. N. Ali, A. A. Syed, and Q. A. Naqvi, "Chiral and/or chiral nihility interfaces: Parametric dependence, power tunneling and rejection," Progress In Electromagnetics Research M, Vol. 23, 167-180, 2012.
doi:10.2528/PIERM11120104
32. Felson, L. B., Hybrid Formulation of Wave Propagation and Scattering, Nato Science Series E, Martinus Nijho, Dordrecht, Netherlands, 1984.
33. Dechamps, G. A., Ray techniques in electromagnetics, Proc. IEEE, Vol. 60, 1022-1035, 1972.
34. Chapman, C. H. and R. Drummond, "Body wave seismograms in inhomogeneous media using Maslov asymptotic theory," Bull. Seismol., Soc. Am., Vol. 72, 277-317, 1982.
35. Maslov, V. P., Perturbation theory and asymptotic method, Gos. Moskov. Univ., Moscow, 1965 (in Russian), Translated into Japanese by Ouchi et al., Iwanami, Tokyo, 1976.
36. Ghaffar, A., Q. A. Naqvi, and K. Hongo, "Analysis of the fields in three dimensional Cassegrain system," Progress In Electromagnetics Research, Vol. 72, 215-240, 2007.
doi:10.2528/PIER07031602
37. Ji, Y. and K. Hongo, "Analysis of electromagnetic waves refracted by a spherical dielectric interface by Maslov's method," J. Opt. Soc. of Am. A, Vol. 8, 541-548, 1991.
doi:10.1364/JOSAA.8.000541
38. Ji, Y. and K. Hongo, "Field in the focal region of a dielectric spherical lens by Maslov's method," J. Opt. Soc. of Am. A, Vol. 8, 1721-1728, 1991.
doi:10.1364/JOSAA.8.001721
39. Hongo, K., K., Y. Ji, and E. Nakajima, "High frequency expression for the field in the caustic region of a reflector using Maslov's method ," Radio Sci., Vol. 21, 911-919, 1986.
doi:10.1029/RS021i006p00911
40. Hongo, K. and Y. Ji, "High frequency expression for the field in the caustic region of a cylindrical reflector using Maslov's method," Radio Sci., Vol. 22, 357-366, 1987.
doi:10.1029/RS022i003p00357
41. Hongo, K. and Y. Ji, "Study of the field around the focal region of spherical reflector antenna by Maslovs method," IEEE Trans. Antennas Propagat., Vol. 36, 592-598, 1988.
doi:10.1109/8.192134
42. Ziolkowski, R. W. and G. A. Deschamps, "Asymptotic evaluation of high frequency field near a caustic: An introduction to Maslov's method," Radio Sci., Vol. 19, 1001-1025, 1984.
doi:10.1029/RS019i004p01001
43. Faryad, M. and Q. A. Naqvi, "High frequency expression for the field in the caustic region of cylindrical reflector placed in chiral medium," Progress In Electromagnetics Research, Vol. 76, 153-182, 2007.
doi:10.2528/PIER07070401
44. Faryad, M. and Q. A. Naqvi, "High frequency expression for the field in the caustic region of a parabolic reflector coated with isotropic chiral medium," Journal of Electromagnetic Waves and Applications, Vol. 22, No. 7, 965-986, 2008.
doi:10.1163/156939308784150092
45. Rahim, T., M. J. Mughal, Q. A. Naqvi, and M. Faryad, "Focal region field of a paraboloidal reflector coated with isotropic chiral medium," Progress In Electromagnetics Research, Vol. 94, 351-366, 2009.
doi:10.2528/PIER09032703
46. Illahi, A. and Q. A. Naqvi, "Study of focusing of electromagnetic waves re°ected by a PEMC backed chiral nihility reflector using Maslov's method," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 7, 863-873, 2009.
doi:10.1163/156939309788355216
47. Sabah, C. and S. Uckun, "Mirrors with chiral slabs," Journal of Optoelectronics and Advanced Materials, Vol. 8, 1918-1924, 2006.