Three hexagonal patch antennas are designed for circular polarization and experimentally validated. These antennas are labeled; simple hexagonal patch, hexagonal patch with slotted ground and hexagonal patch with parasitic element. The measured impedance bandwidths of the three antennas are 2% for the simple patch, 5.2% for the patch with slotted ground and 6.35% for the antenna with parasitic element. The axial ratio (measured) obtained is 4.73% for the patch with slotted ground and 3.33% for the hexagonal patch antenna with parasitic element. The measured radiation patterns of these antennas are found to be in good agreement with the simulated radiation patterns. The average gain of all the three antennas is also evaluated. A frequency selective surface (FSS) is proposed with dimensions smaller than that of a conventional FSS structure. The measured gain improvement with the proposed FSS is around 3 dB in the operating band.
2. Sharma, P. and K. C. Gupta, "Analysis and optimized design of single feed circularly polarized microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 31, No. 6, 949-955, Nov. 1983.
doi:10.1109/TAP.1983.1143162
3. Garg, R., P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.
4. Ray, K. P., D. M. Suple, and N. Kant, "Suspended hexagonal microstrip antennas for circular polarization," International Journal of Microwave and Optical Technology, Vol. 5, No. 3, May 2010.
5. Ramirez, R. R., F. De Flaviis, and N. G. Alexopoules, "Single-feed circularly polarized microstrip ring antenna and arrays," IEEE Transactions on Antennas and Propagation, Vol. 48, No. 7, 1040-1047, Jul. 2000.
doi:10.1109/8.876322
6. Bahl, I. J. and P. Bhartia, Microstrip Antennas, Artech House, Dedham, MA, 1980.
7. Kumar, G. and K. P. Ray, Broadband Microstrip Antennas, Artech House Publishers, London, 2003.
8. Pirhadi, A., H. Bahrami, and J. Nasri, "Wideband high directive aperture coupled microstrip antenna design by using a FSS superstrate layer," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 4, 2101-2106, Apr. 2012.
doi:10.1109/TAP.2012.2186230
9. Chen, H.-Y. and Y. Tao, "Bandwidth enhancement of a U-slot patch antenna using dual-band frequency-selective surface with double rectangular ring elements," Microwave Opt. Technol. Lett., Vol. 53, No. 7, 1547-1553, Jul. 2011.
doi:10.1002/mop.26066
10. Monavar, F. M. and N. Komjani, "Bandwidth enhancement of microstrip patch antenna using Jerusalem cross-shaped frequency selective surfaces by invasive weed optimization approach," Progress In Electromagnetics Research, Vol. 121, 103-120, 2011.
doi:10.2528/PIER11051305
11. Chaimool, S., K. L. Chung, and P. Akkaraekthalin, "Simultaneous gain and bandwidths enhancement of a single-feed circularly polarized microstrip patch antenna using a meta material reflective surface," Progress In Electromagnetics Research B, Vol. 22, 23-37, 2010.
doi:10.2528/PIERB10031901
12. Arnaud, E., R. Chantalat, M. Koubeissi, T. Monediere, E. Rodes, and M. Thevenot, "Global design of an EBG antenna and meander-line polarizer for circular polarization," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 215-218, 2010.
doi:10.1109/LAWP.2010.2045098
13. Arnaud, E., R. Chantalat, T. Monediere, E. Rodes, and M. Thevenot, "Performance enhancement of self-polarizing metallic EBG antennas," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 538-541, 2010.
doi:10.1109/LAWP.2010.2051315
14. Singh, D., A. Kumar, S. Meena, and V. Agarwala, "Analysis of frequency selective surfaces for radar absorbing materials," Progress In Electromagnetics Research B, Vol. 38, 297-314, 2012.
15. Lin, H.-N., K.-W. Lin, and S.-C. Chen, "Use of frequency selective surfaces to prevent SAR and improve antenna performance of cellular phones," PIERS Proceedings, 214-218, Suzhou, China, Sep. 12-16, 2011.
16. Munk, A., Frequency Selective Surfaces: Theory and Design, Wiley-Interscience, New York, 2000.
17. Da Silva, M. R., C. de L. N obrega, P. H. da F. Silva, and A. G. D'Assuncao, "Dual-polarized band-stop fss spatial filters using vicsek fractal geometry," Microwave Opt. Technol. Lett., Vol. 55, No. 1, Jan. 2013.
doi:10.1002/mop.27242
18. Agrawal, P. and M. C. Bailey, "An analysis technique for microstrip antennas," IEEE Transactions on Antennas and Propagation, Vol. 25, No. 6, 756-759, Nov. 1977.
doi:10.1109/TAP.1977.1141706
19. Thevenot, M., M. S. Denis, A. Reineix, and B. Jecko, "Design of a new photonic cover to increase antenna directivity," Microwave Opt. Technol. Lett., Vol. 22, No. 2, 136-139, Jul. 1999.
doi:10.1002/(SICI)1098-2760(19990720)22:2<136::AID-MOP17>3.0.CO;2-K
20. Weily, A. R., K. P. Esselle, T. S. Bird, and B. C. Sanders, "High-gain 1D EBG resonator antenna," Microwave Opt. Technol. Lett., Vol. 47, No. 2, 107-114, 2005.
doi:10.1002/mop.21095