Vol. 52

Latest Volume
All Volumes
All Issues

Optical Modes of a Dispersive Periodic Nanostructure

By Gandhi Alagappan and Alexei Deinega
Progress In Electromagnetics Research B, Vol. 52, 1-18, 2013


We show that the optical modes of a periodic nanostructure with frequency dependent dielectric constant (i.e., a dispersive optical nanostructure), in general can be written as an ordinary eigenvalue problem of a "dielectric function operator", for each distinct symmetry representation of the periodic nanostructure. For a frequency dependence in the form of polynomial rational function, the problem translates to a polynomial eigenvalue equation in the frequency of the mode. The resulting problem can be solved using the basis functions of a dielectric backbone structure, which has a frequency independent dielectric constant. Rapid convergence is achieved when the basis functions are selected to be the modes of a dielectric backbone structure that minimizes the frequency perturbation of the dielectric function of the optical nanostructure. In particular, using a two dimensional photonic crystal constructed with a polar crystal as an example, we demonstrate that, remarkable simple cubic equations are sufficient to obtain accurate descriptions of eigenfrequencies.


Gandhi Alagappan and Alexei Deinega, "Optical Modes of a Dispersive Periodic Nanostructure," Progress In Electromagnetics Research B, Vol. 52, 1-18, 2013.


    1. Cusack, M. A., P. R. Briddon, and M. Jaros, "Absorption spectra and optical transitions in InAs/GaAs self-assembled quantum dots," Phys. Rev. B, 4047-4050, 1997.

    2. Politano, A., R. G. Agostino, E. Colavita, V. Formoso, and G. Chiarello, "Electronic properties of self-assembled quantum dots of sodium on Cu(1 1 1) and their interaction with water," Surf. Sci., Vol. 601, 2656-2659, 2007.

    3. Politano, A., A. R. Marino, V. Formoso, D. Farias, R. Miranda, and G. Chiarello, "Evidence for acoustic-like plasmons on epitaxial graphene on Pt(111)," Phys. Rev. B, Vol. 84, 033401, 2011.

    4. Borca, B., , S. Barja, M. Garnica, M. Minniti, A. Politano, J. M. Rodriguez-Garcia, J. J. Hinarejos, D. Farias, A. L. Vazquez de Parga, and , "Electronic and geometric corrugation of periodically rippled, self-nanostructured graphene epitaxially grown on Ru(0001)," New J. Phys., Vol. 12, 093018, 2010.

    5. Ariga, K., A. Vinu, Y. Yamauchi, Q. Ji, and J. P. Hill, "Nanoarchitectonics for mesoporous materials," Bull. Chem. Soc. Jpn., Vol. 85, 1-32, 2012.

    6. Xuan, W., C. Zhu, Y. Liu, and Y. Cui, "Mesoporous metal-organic framework materials," Chem. Soc. Rev., Vol. 41, 1677-1695, 2012.

    7. John, S., "Strong localization of photons in certain disordered dielectric superlattices," Phys. Rev. Lett., Vol. 58, 2486-2489, 1987.

    8. Yablonovitch, E., "Inhibited spontaneous emission in solid-state physics and electronics," Phys. Rev. Lett., Vol. 58, 2059-2062, 1987.

    9. Joannopoulus, J. D., R. D. Meade, and J. N. Winn, Photonic Crystals: Moding The Flow of Light, Princeton University Press, Princeton, NJ, 1995.

    10. Sakoda, K., Optical Properties of Photonic Crystals, Spinger, New York, 2001.

    11. Smith, D. R., J. B. Pendry, and M. C. K. Wiltshire, "Metamaterials and negative refractive index," Science, Vol. 305, 788-792, 2004.

    12. Liu, Y. and X. Zhang, "Metamaterials: A new frontier of science and technology," Chem. Soc. Rev., Vol. 40, 2494-2507, 2011.

    13. Kosaka, H., T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, "Superprism phenomena in photonic crystals," Phys. Rev. B , Vol. 58, R10096-R10099, 1998.

    14. Meier, M., A. Mekis, A. Dodabalapur, A. Timko, R. E. Slusher, J. D. Joannopoulos, and O. Nalamasu, "Laser action from two-dimensional distributed feedback in photonic crystals," Appl. Phys. Lett., Vol. 74, 7-9, 1999.

    15. Politano, A., "Influence of structural and electronic properties on the collective excitations of Ag/Cu(111)," Plasmonics, Vol. 7, 131-136, 2012.

    16. Deubel, M., G. Freymann, M. Wegener, S. Pereira, K. Busch, and C. M. Soukoulis, "Direct laser writing of three-dimensional photonic-crystal templates for telecommunications," Nat. Mater., Vol. 3, 444-447, 2004.

    17. Chan, C. T., Q. L. Yu, and K. M. Ho, "Order-N spectral method for electromagnetic waves," Phys. Rev. B, Vol. 51, 16635, 1995.

    18. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-difference Time-domain Method, 3rd Ed., Artech House, Inc., Norwood, 2005.

    19. Pendry, J. B., "Photonic band structures," J. Mod. Opt., , Vol. 41, 209-229, 1994.

    20. Stefanou, N., V. Yannopapas, and A. Modinos, "Heterostructures of photonic crystals: Frequency bands and transmission coeffcients," Comp. Phys. Comm., Vol. 113, 49-77, 1998.

    21. Li, Z. Y. and L. L. Lin, "Photonic band structures solved by a plane-wave-based transfer-matrix method," Phys. Rev. E, Vol. 67, 046607, 2003.

    22. Deinega, A., S. Belousov, and I. Valuev, "Hybrid transfer-matrix FDTD method for layered periodic structures," Opt. Lett., Vol. 34, 860-862, 2009.

    23. Hsue, Y.-C. and T.-J. Yang, "Applying a modified plane-wave expansion method to the calculations of transmissivity and reflectivity of a semi-infinite photonic crystal," Phys. Rev. E, Vol. 70, 016706, 2004.

    24. Shi, S., C. Chen, and D. W. Prather, "Revised plane wave method for dispersive material and its application to band structure calculations of photonic crystal slabs," Appl. Phys. Lett., Vol. 86, 043104, 2005.

    25. Gu, B.-Y., L.-M. Zhao, and Y.-C. Hsue, "Applications of the expanded basis method to study the properties of photonic crystals with frequency-dependent dielectric functions and dielectric losses," Physics Letters A, Vol. 355, 134-141, 2006.

    26. Yuan, J. and Y. Y. Lu, "Photonic bandgap calculations with Dirichlet-to-Neumann maps," J. Opt. Soc. Am. A, Vol. 23, 3217-3222, 2006.

    27. Yuan, J., Y. Y. Lu, and X. Antoine, "Modeling photonic crystals by boundary integral equations and Dirichlet-to-Neumann maps," J. Comp. Phys., Vol. 227, 4617-4629, 2008.

    28. Ho, K.-M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Phys. Rev. Lett., Vol. 65, 3152-3155, 1990.

    29. Johnson, S. G. and J. D. Joannopoulos, "Block-iterative frequency-domain methods for Maxwell's equations in a planewave basis," Opt. Exp., Vol. 8, 173-190, 2001.

    30. Notomi, M., "Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap," Phys. Rev. B, Vol. 62, 10696-10705, 2000.

    31. Foteinopoulou, S. and C. M. Soukoulis, "Electromagnetic wave propagation in two-dimensional photonic crystals: A study of anomalous refractive effects," Phys. Rev. B, Vol. 72, 165112, 2005.

    32. Jiang, W., R. T. Chen, and X. Lu, "Theory of light refraction at the surface of a photonic crystal," Phys. Rev. B, Vol. 71, 245115, 2005.

    33. Santamara, , F. G., J. F. G. Lopez, P. V. Braun, and C. Lopez, "Optical diffraction and high-energy features in three-dimensional photonic crystals," Phys. Rev. B, Vol. 71, 195112, 2005.

    34. Serebryannikov, A. E., T. Magath, and K. Schuenemann, "Bragg transmittance of s-polarized waves through finite-thickness photonic crystals with a periodically corrugated interface," Phys. Rev. E, Vol. 74, 066607, 2006.

    35. Li, Z. Y., L. L. Lin, and Z. Q. Zhang, "Spontaneous emission from photonic crystals: Full vectorial calculations," Phys. Rev. Lett., Vol. 84, 4341-4344, 2000.

    36. Zhou, Y. S., X. H. Wang, B. Y. Gu, and F. H. Wang, "Photonic band gap effects on spontaneous emission lifetimes of an assembly of atoms in two-dimensional photonic crystals," Phys. Rev. E, Vol. 72, 017601, 2005.

    37. Kuzmiak, V., A. A. Maradudin, and F. Pincemin, "Photonic band structures of two-dimensional systems containing metallic components," Phys. Rev. B, Vol. 50, 16835-16844, 1994.

    38. Kuzmiak, V. and A. A. Maradudin, "Photonic band structures of one- and two-dimensional periodic systems with metallic components in the presence of dissipation," Phys. Rev. B, Vol. 55, 7427-7444, 1997.

    39. Kuzmiak, V., A. A. Maradudin, and A. R. McGurn, "Photonic band structures of two-dimensional systems fabricated from rods of a cubic polar crystal," Phys. Rev. B, Vol. 55, 4298-4311, 1997.

    40. Zhang, W., A. Hu, X. Lei, N. Xu, and N. Ming, "Photonic band structures of a two-dimensional ionic dielectric medium," Phys. Rev. B, Vol. 54, 10280-10283, 1996.

    41. Lee, W. M., P. M. Hui, and D. Stroud, "Propagating photonic modes below the gap in a superconducting composite," Phys. Rev. B, Vol. 51, 8634-8637, 1995.

    42. Raman, A. and S. Fan, "Photonic band structure of dispersive metamaterials formulated as a hermitian eigenvalue problem," Phys. Rev. Lett., Vol. 104, 087401, 2010.

    43. Toader, O. and S. John, "Photonic band gap enhancement in frequency-dependent dielectrics," Phys. Rev. E, Vol. 70, 046605, 2004.

    44. Inui, T., Y. Tanabe, and Y. Onodera, Group Theory and Its Application in Physics,, Springer, Berlin, 1996.

    45. Alagappan, G., X. W. Sun, and H. D. Sun, "Symmetries of the eigenstates in an anisotropic photonic crystal," Phys. Rev. B , Vol. 77, 195117, 2008.

    46. Lopez-Tejeira, F., T. Ochiai, K. Sakoda, and J. Sanchez-Dehesa, "Symmetry characterization of eigenstates in opal-based photonic crystals ," Phys. Rev. B, Vol. 65, 195110, 2002.

    47. Sakoda, K., N. Kawai, T. Ito, A. Chutinan, S. Noda, T. Mitsuyu, and K. Hirao, "Photonic bands of metallic systems. I. Principle of calculation and accuracy ," Phys. Rev. B, Vol. 64, 045116, 2001.

    48. Gohberg, I., P. Lancaster, and L. Rodman, Matrix Polynomials, Academic Press, London, 1982.

    49. Yariv, A., "Introduction to Theory and Applications Mechanics," John Wiley & Sons Inc., 1982.

    50. Kittel, C., Introduction to Solid State Physics, 7th Ed., Wiley, 1995.

    51. Halevi, P. and F. Ramos-Mendieta, "Tunable photonic crystals with semiconducting constituents," Phys. Rev. Lett., Vol. 85, 1875, 2000.

    52. Weber, M. J., Handbook of Optical Materials, CRC Press, 2002.

    53. Deinega, A. and S. John, "Effective optical response of silicon to sunlight in the finite-difference time-domain method," Opt. Lett., Vol. 37, 112-114, 2012..

    54. Ribbing, C. G., H. HogstrÄom, and A. Rung, "Studies of polaritonic gaps in photonic crystals," Appl. Opt., Vol. 45, 1575-1582, 2006.

    55. Foteinopoulou, S., M. Kafesaki, E. N. Economou, and C. M. Soukoulis, "\Two-dimensional polaritonic photonic crystals as terahertz uniaxial metamaterials," Phys. Rev. B, Vol. 84, 035128, 2011.