Vol. 52

Latest Volume
All Volumes
All Issues

Slot Design for Dynamic Iron Loss Reduction in Induction Machines

By Sana Jelassi, Raphael Romary, and Jean-Francois Brudny
Progress In Electromagnetics Research B, Vol. 52, 79-97, 2013


The goal of this paper is to present a semi analytical method which makes it possible the calculation of the dynamic iron losses in a three phase induction machine taking the slotting effect into account. The particularity of this method is that it allows the distinction of the stator and the rotor slot openings contribution in the dynamic and, consequently, in the total iron losses. This analytical study shows that a convenient choice of the stator and the rotor slot openings leads to an iron loss reduction, due to the cancellation of particular flux density slotting harmonics. Theoretical results are confirmed numerically.


Sana Jelassi, Raphael Romary, and Jean-Francois Brudny, "Slot Design for Dynamic Iron Loss Reduction in Induction Machines," Progress In Electromagnetics Research B, Vol. 52, 79-97, 2013.


    1. Ma, L., M. Sanada, S. Moromoto, and Y. Takeda, "Iron loss prediction considering the rotational field and flux density harmonics in IPMSM and SynRM," IEE Proc. --- Electr. Power Appl., Vol. 150, No. 6, 747-751, 2003.

    2. Bottruscio, O., M. Chiampi, A. Manzin, and M. Zucca, "Additional losses in induction machines under synchronous noload conditions," IEEE Trans. on Magnetics, Vol. 40, No. 5, 3254-3261, 2004.

    3. Diaz, G., P. Arboleya, C. Gonzalez-Moran, and J. Gomez-Aleixandre, "Revision of the hysteresis and excess loss computation method as a means of improving the rotational loss estimate in induction motors," IET Elecr. Power Appl., Vol. 1, No. 1, 75-81, 2007.

    4. Lee, J. J., Y. K. Kim, H. Nam, K. H. Ha, J. P. Hong, and D. H. Hwang, "Loss distribution of three phase induction motor fed by pulsewidth modulated inverter," IEEE Trans. on Magnetics, Vol. 40, No. 2, 762-765, 2004.

    5. Gmyrek, Z., A. Boglietti, and A. Cavagnino, "Estimation of iron losses in induction motors: Calculation, method, results, and analysis," IEEE Trans. on Industrial Electronics57, Vol. 57, No. 1, 161-171, 2010.

    6. Cassoret, B., R. Corton, D. Roger, and J. F. Brudny, "Magnetic noise reduction of induction machine," IEEE Trans. on Power Electronics , Vol. 18, No. 2, 570-579, 2003.

    7. Le Besnerais, J., V. Lanfranchi, M. Hecquet, R. Romary, and P. Brochet, "Optimal slot opening width for magnetic noise reduction in induction motors," IEEE Trans. on Energy Conversion , Vol. 24, No. 4, 869-874, 2009.

    8. Yamazaki, K., "Harmonic copper and iron losses calculation of induction motor using nonlinear time-stepping finite element method," IEEE International Electric Machines and Drives Conference, 551-553, 2001.

    9. Brudny, J. F. and R. Romary, "Analysis of the slotting effect on the induction machine dynamic iron losses," Computer Fields Models of Electromagnetic Devices, Vol. 34, 27-73, 2010.

    10. Lopez, S., , B. Cassoret, J. F. Brudny, L. Lefebvre, and J. N. Vincent, "Grain oriented steel assembly characterization for the development of high e±ciency AC rotating electrical machines," IEEE Trans. on Magnetics, Vol. 45, No. 10, 4161-4164, 2009.

    11. Brudny, J. F., B. Cassoret, R. Lemaitre, and J. N. Vincent, "Magnetic core and use of magnetic core for electrical machines," International Patent PCT/EP2008/061884, 2009.

    12. Carter, F. W., "Air gap induction," Electrical World, Vol. 38, 884-892, 1901.

    13. Romary, R., D. Roger, and J. F. Brudny, "Analytical computation of an AC machine external magnetic field," European Physical Journal --- Applied Physics EPJ-AP, EDP Sciences,, Vol. 47, No. 3, 2009.

    14. Thailly, D., R. Romary, D. Roger, and J. F. Brudny, "Attenuation of magnetic field components through an AC machine stator," ISEF 2007, No. 38, 2007.

    15. Bertotti, G., "General properties of power losses in soft ferromagnetic materials," IEEE Trans. on Magnetics, Vol. 24, No. 1, 621-630, 1988.

    16. Boglietti, M. A., A. Cavagnino, M. Lazzari, and M. Pastorelli, "Predicting iron losses in soft magnetic materials with arbitrary voltage supply: An engineering approach ," IEEE Trans. on Magnetics, Vol. 39, 981-989, 2003.

    17. Ranlof, M., A. Wolfbrandt, J. Lidenholm, and U. Lundin, "Core loss prediction in large hydropower generators: Influence of rotational fields," IEEE Trans. on Magnetics, Vol. 45, No. 8, 3200-3206, 2009.

    18. Bottauscio, O., A. Canova, M. Chiampi, and M. Repetto, "Iron losses in electrical machines: Influence of different material model," IEEE Trans. on Magnetics, Vol. 38, No. 2, 805-808, 2002.

    19. Deng, F., "An improved iron loss estimation for permanent magnet brushless machines," IEEE Trans. on Energy Conversion, Vol. 14, No. 4, 1391-1395, 1999.

    20. Roger, A. N., "Prediction of loss in silicon steel from distorted waveform," IEEE Trans. on Magnetics, Vol. 14, No. 4, 263-268, 1978.

    21. Brudny, J. F., "Modelling of induction machine slotting resonance phenomenon," European Physical Journal Applied Physic, 1009-1023, 1997.