Vol. 5

Latest Volume
All Volumes
All Issues
2008-10-16

Sharp Focus Area of Radially-Polarized Gaussian Beam Propagation through an Axicon

By Victor Kotlyar, A. A. Kovalev, and Sergey Stafeev
Progress In Electromagnetics Research C, Vol. 5, 35-43, 2008
doi:10.2528/PIERC08091902

Abstract

Based upon developed radial FDTD-method, used for solution of Maxwell equations in cylindrical coordinates and implemented in Matlab-7.0 environment, we simulated focusing of the annular Gaussian beam with radial polarization by conical microaxicon with numerical aperture 0.60. It is shown that the area of focal spot (defined as area where intensity exceeds half of its maximum) can be 0.096λ2, and focal spot diameter equals to 0.35λ.

Citation


Victor Kotlyar, A. A. Kovalev, and Sergey Stafeev, "Sharp Focus Area of Radially-Polarized Gaussian Beam Propagation through an Axicon," Progress In Electromagnetics Research C, Vol. 5, 35-43, 2008.
doi:10.2528/PIERC08091902
http://test.jpier.org/PIERC/pier.php?paper=08091902

References


    1. Dorn, R., S. Quabis, and G. Leuchs, "Sharper focus for a radially polarized light beam," Phys. Rev. Lett., Vol. 91, 233901, 2003.
    doi:10.1103/PhysRevLett.91.233901

    2. Stadler, J., C. Stanciu, C. Stupperich, and A. J. Meixner, "Tighter focusing with a parabolic mirror," Opt. Lett., Vol. 33, No. 7, 681-683, 2008.
    doi:10.1364/OL.33.000681

    3 . Davidson, N. and N. Bokor, "High-numerical-aperture focusing of radially polarized doughnut beams with a parabolic mirror and a flat diffractive lens," Opt. Lett., Vol. 29, No. 12, 1318-1320, 2004.
    doi:10.1364/OL.29.001318

    4. Prather, D. W. and S. Shi, "Formulation and application of the finite-difference time-domain method for the analysis of axially symmetric diffractive optical elements," J. Opt. Soc. Am. A, Vol. 16, No. 5, 1131-1142, 1999.
    doi:10.1364/JOSAA.16.001131

    5. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas and Propagation, Vol. 14, 302-307, 1966.

    6. Berenger, J. P., "A perfectly matched layer for the absorption of electromagnetic waves ," Computational Physics, Vol. 114, 185-200, 1994.
    doi:10.1006/jcph.1994.1159

    7. Taflove A. and K. R. Umashankar, "The finite-difference timedomain method for numerical modeling of electromagnetic wave interaction with arbitrary structures," Progress In Electromagnetics Research, Vol. 02, 287-373, 1990.

    8. Chu, S. T. and S. K. Chandhuri, "Finite-difference timedomain method for optical waveguide analysis," Progress In Electromagnetics Research, Vol. 11, 255-300, 1995.

    9. Kung, F. and H.-T. Chuah, "A finite-difference time-domain software for simulation of printed circuit board assembly," Progress In Electromagnetics Research, Vol. 50, 299-335, 2005.
    doi:10.2528/PIER04071401

    10. D'Orazio, A., V. De Palo, M. De Sairo, V. Petruzzelli, and F. Prudenzano, "Finite difference time domain modeling of light amplification in active photonic band gab," Progress In Electromagnetics Research, Vol. 39, 299-339, 2003.
    doi:10.2528/PIER02112501

    11. Zheng, G., A. A. Kishk, A. W. Glisson, and A. B. Yakovlev, "A novel implementation of modified Maxwell's equations in the periodic finite-difference time-domain method ," Progress In Electromagnetics Research, Vol. 59, 85-100, 2006.
    doi:10.2528/PIER05092601

    12. Ghaffar, A. and Q. A. Naqvi, "Focusing of electromagnetic plane wave into uniaxial crystal by a three dimensional plano convex lens ," Progress In Electromagnetics Research, Vol. 83, 25-42, 2008.
    doi:10.2528/PIER08041404

    13. Agastra, E., G. Bellaveglia, L. Lucci, R. Nesti, G. Pelosi, G. Ruggerini, and S. Selleri, "Genetic algorithm optimization of high-effficiency wide-bend multimodal square horns for discrete lenses," Progress In Electromagnetics Research, Vol. 83, 335-352, 2008.
    doi:10.2528/PIER08061806

    14. Boutayeb, H., A.-C. Tarot, and H. Mahdjoubi, "Focusing characteristics of a metallic cylindrical electromagnetic band gab structure with defects," Progress In Electromagnetics Research, Vol. 66, 89-103, 2006.
    doi:10.2528/PIER06100504

    15. Dou, W. B., Z. L. Sun, and X. Q. Tan, "Fields in the focal space of symmetrical hyperbolic focusing lens ," Progress In Electromagnetics Research, Vol. 20, 213-226, 1998.
    doi:10.2528/PIER98021300

    16. Matsushima, A., Y. Nakamura, and S. Tomino, "Application of integral equation method to metal-plate lens structures," Progress In Electromagnetics Research, Vol. 54, 245-262, 2005.
    doi:10.2528/PIER05011401

    17. Minin, I. V., O.V. Minin, Y. R. Triandaphilov, and V. V. Kotlyar, "Subwavelength diffractive photonic crystal lens," Progress In Electromagnetics Research B, Vol. 7, 257-264, 2008.
    doi:10.2528/PIERB08041501

    18. Srivastava, R., S. Srivastava, and S. P. Ojha, "Negative refraction by photonic crystal," Progress In Electromagnetics Research B , Vol. 2, 15-16, 2008.
    doi:10.2528/PIERB08042302

    19. Luan, P.-G. and K.-D. Chang, "Photonic-crystal lens computerusing negative refraction," PIERS Online, Vol. 3, No. 1, 91-95, 2007.
    doi:10.2529/PIERS060905234755

    20. Haxhe, S. and F. AbdelMalek, "Novel design of photonic crystal lens based on negative refractive index," PIERS Online, Vol. 4, No. 2, 296-300, 2008.
    doi:10.2529/PIERS070903122445

    21. Lu, Z.-Y., "Design method of the ring-focus antenna with a variable focal distance for forming an elliptical beam ," Progress In Electromagnetics Research Letters, Vol. 4, 73-80, 2008.
    doi:10.2528/PIERL08051401

    22. Sugiona, K., Y. Hanada, and K. Midorikawa, "3D microstructuring of glass by femtosecond laser direct writing and aoolication to biophotonic microchips ," Progress In Electromagnetics Research Letters, Vol. 1, 181-188, 2008.
    doi:10.2528/PIERL07120609

    23. Mohanty, S. K., K. S. Mohanty, and M. W. Berns, "Organization of microscale objects using a microfabricated optical fiber," Opt. Lett., Vol. 33, No. 18, 2155-2157, 2008.
    doi:10.1364/OL.33.002155

    24. Katchalov, A. P., "Gaussian beam for Maxwell equations on a manifold," Journal of Mathematical Sciences, Vol. 122, No. 5, 3485-3501, 2004.
    doi:10.1023/B:JOTH.0000034028.65715.55

    25. Kalosha, V. P. and I. Golub, "Toward the subdiffraction focusing limit of optical superresolution," Opt. Lett., Vol. 32, No. 2, 3540-3542, 2007.
    doi:10.1364/OL.32.003540