Vol. 5

Latest Volume
All Volumes
All Issues
2008-10-30

Dielectric Permittivity Measuring Technique of Film-Shaped Materials at Low Microwave Frequencies from Open-End Coplanar Waveguide

By Juan Hinojosa
Progress In Electromagnetics Research C, Vol. 5, 57-70, 2008
doi:10.2528/PIERC08100101

Abstract

This paper presents a broad-band technique for measuring the dielectric permittivity of isotropic nonmagnetic film-shaped materials at low microwave frequencies. The material under test is the substrate of an open-end coplanar waveguide (CPW) used as sample-cell. The dielectric permittivity is extracted from S11 reflection parameter measurement of the open-end CPW cell using analytical relationships, which allow to decrease the computation time with respect to any full-wave electromagnetic method. Vector network analyzer (VNA) and high-quality on-coplanar test fixture are used for the measurements between 300 kHz and 3 GHz. Measured εr data for several nonmagnetic low-loss materials are presented. This technique shows a good agreement between measured and predicted data for the real permittivity over 0.05 GHz-3GHz frequency range.

Citation


Juan Hinojosa, "Dielectric Permittivity Measuring Technique of Film-Shaped Materials at Low Microwave Frequencies from Open-End Coplanar Waveguide," Progress In Electromagnetics Research C, Vol. 5, 57-70, 2008.
doi:10.2528/PIERC08100101
http://test.jpier.org/PIERC/pier.php?paper=08100101

References


    1. Ghodgaonkar, D. K., V. V. Varadan, and V. K. Varadan, "Free-space measurement of complex permittivity and complex permeability of magnetic materials at microwave frequencies ," IEEE Trans. Instrum. Meas., Vol. 39, No. 2, 387-394, 1990.
    doi:10.1109/19.52520

    2. Valagiannopoulos, C. A., "On measuring the permittivity tensor of an anisotropic material from the transmission coefficients," Progress In Electromagnetics Research B, Vol. 9, 105-116, 2008.
    doi:10.2528/PIERB08072005

    3. Queffelec, P., Ph. Gelin, J. Gieraltowski, and J. Loaec, "A microstrip device for the broad-band simultaneous measurement of complex permeability and permittivity," IEEE Trans. Magn., Vol. 30, No. 2, 224-231, 1994.
    doi:10.1109/20.312262

    4. Huang, R. F. and D. M. Zhang, "Application of mode matching method to analysis of axisymmetric coaxial discontinuity structures used in permeability and/or permittivity measurement ," Progress In Electromagnetics Research, Vol. 67, 205-230, 2007.
    doi:10.2528/PIER06083103

    5. Chung, B.-K., "Dielectric constant measurement for thin material at microwave frequencies," Progress In Electromagnetics Research, Vol. 75, 239-252, 2007.
    doi:10.2528/PIER07052801

    6. Challa, R., -K., D. Kajfez, J. R. Gladden, and A. Z. Elsherbeni, "Permittivity measurement with a non-standard waveguide by using TRL calibration and fractional linear data fitting," Progress In Electromagnetics Research B, Vol. 2, 1-13, 2008.
    doi:10.2528/PIERB07102001

    7. Stewart, J. W., and M. J. Havrilla, "Electromagnetic characterization of a magnetic material using an open-ended waveguide probe and a rigorous full-wave multimode model," J. of Electromagn. Waves and Appl., Vol. 20, 2037-2052, 2006.
    doi:10.1163/156939306779322693

    8. Hyde IV, M. W. and M. J. Havrilla, "A nondestructive technique for determining complex permittivity and permeability of magnetic sheet materials using two flanged rectangular waveguides," Progress In Electromagnetics Research, Vol. 79, 367-386, 2008.
    doi:10.2528/PIER07102405

    9. Hinojosa, J., "S-parameter broadband measurements on-coplanar and fast extraction of the substrate intrinsic properties ," IEEE Microw. and Wireless Comon. Lett., Vol. 11, No. 2, 80-82, 2001.
    doi:10.1109/7260.914309

    10. Wu, Y. Q., Z. X. Tang, B. Zhang, and Y. H. Xu, "Permeability measurement of ferromagnetic materials in microwave frequency range using support vector machine regression," Progress In Electromagnetics Research, Vol. 70, 247-256, 2007.
    doi:10.2528/PIER07012801

    11. Moradi, G. and A. Abdipour, "Measuring the permittivity of dielectric materials using STDR approach," Progress In Electromagnetics Research, Vol. 77, 357-365, 2007.
    doi:10.2528/PIER07080201

    12. Wu, Y. Q., Z. X. Tang, Y. H. Xu, X. He, and B. Zhang, "Permittivity measurement of ferroelectric thin film based on CPW transmission line," J. of Electromagn. Waves and Appl., Vol. 22, 555-562, 2008.
    doi:10.1163/156939308784150272

    13. He, X., Z. Tang, B. Zhang, and Y. Wu, "A new deembedding method in permittivity measurement of ferroelectric thin film material," Progress In Electromagnetics Research Letters, Vol. 3, 1-8, 2008.
    doi:10.2528/PIERL08011501

    14. Wu, Y. Q., Z. Tang, Y. Xu, and X. He, "A new method to avoid crowding phenomenon in extracting the permittivity of ferroelectric thin films," Progress In Electromagnetics Research Letters, Vol. 4, 159-166, 2008.
    doi:10.2528/PIERL08091402

    15. Boughriet, A.-H., C. Legrand, and A. Chapoton, "Noniterative stable transmission/reflection method for low-loss material complex permittivity determination," IEEE Trans. Microw. Theory Tech., Vol. 45, No. 1, 52-57, 1997.
    doi:10.1109/22.552032

    16. Pannel, R. M. and B. W. Jervis, "Two simple methods for the measurement of dielectric permittivity of low-loss microstrip substrates ," IEEE Trans. Microw. Theory Tech., Vol. 29, No. 4, 383-386, 1981.
    doi:10.1109/TMTT.1981.1130362

    17. Hinojosa, J., "Permittivity characterization from open-end microstrip line measurements," Microw. Opt. Tecnol. Lett., Vol. 49, No. 6, 1371-1374, 2007.
    doi:10.1002/mop.22410

    18. Zhang, J., and T. Y. Hsiang, "Dispersion characteristics of coplanar waveguides at subterahertz frequencies," J. of Electromagn. Waves and Appl., Vol. 20, 1411-1417, 2006.
    doi:10.1163/156939306779276767

    19. Dib, N., "Comprehensive study of CAD models of several coplanar waveguide (CPW) discontinuities ," IEE Proc. Microw. Antennas Propag., Vol. 152, No. 2, 69-76, 2005.
    doi:10.1049/ip-map:20045039

    20. Ghione, G. and C. Naldi, "Analytical formulas for coplanar lines in hybrid and monolithic MICs," Electron. Lett., Vol. 20, No. 4, 179-181, 1984.
    doi:10.1049/el:19840120

    21. Denlinger, E., J., "Losses of microstrip lines," IEEE Trans. Microw. Theory Tech., Vol. 28, No. 6, 513-522, 1980.
    doi:10.1109/TMTT.1980.1130112

    22. Rosloniec, S., Algorithms for Computer-aided Design of Linear Microwave Circuits, Artech House, MA, 1990.