We present a pin-Traveling wave Photodetector (TWPD) on semi-insulating (SI) InP substrate at 1.55 μm wavelength window with an electrical bandwidth of more than 120 GHz, a line characteristic impedance of about 50 W, and microwave index matched to the optical group index. The internal quantum efficiency more than 99% for a 200μm long device is determined. The layer stack of the TWPD has previously utilized in a semiconductor optical amplifier (SOA). The TWPD can be monolithically integrated with passive and active components such as arrayed waveguide grating (AWG), Mach-Zehnder Interferometer (MZI), laser and modulator.
2. Pasalic, D. and R. Vahldieck, "A hybrid drift-diffusion-TLM analysis of traveling-wave photodetectors," IEEE Trans. Microwave Theory Tech., Vol. 53, No. 9, 2700-2706, 2005.
doi:10.1109/TMTT.2005.854201
3. Torrese, G., "Ultra-wide bandwidth photodetectors for optical receivers,", Ph.D. Dissertation, Universite Catholique De Louvain, 2002.
4. Beling, A., J. C. Campbell, H. G. Bach, G. G. Mekonnen, and D. Schmidt, "Parallel-fed traveling wave photodetector for > 100-GHz applications," IEEE J. Lightw. Technol., Vol. 26, No. 1, 16-20, 2008.
doi:10.1109/JLT.2007.911889
5. Rouvalis, E., C. C. Renaud, D. G. Moodie, M. J. Robertson, and A. J. Seeds, "Traveling-wave uni-traveling carrier photodiodes for continuous wave THz generation," Opt. Express, Vol. 18, No. 11, 11105-11110, 2010.
doi:10.1364/OE.18.011105
6. Zhang, Y. X., J. Q. Pan, L. J. Zhao, H. L. Zhu, and W. Wang, "Design and characterization of evanescently coupled uni-traveling carrier photodiodes with a multimode diluted waveguide structure," Chin. Phys. Lett., Vol. 27, No. 2, 028501, 2010.
doi:10.1088/0256-307X/27/2/028501
7. Xu, L., M. Nikoufard, X. J. M. Leijtens, T. de Vries, E. Smalbrugge, R. Notzel, Y. S. Oei, and M. K. Smit, "High-performance InP-based photodetector in an amplifier layer stack on semi-insulating substrate," IEEE Photon. Technol. Lett., Vol. 20, No. 23, 1941-1943, 2008.
doi:10.1109/LPT.2008.2005425
8. Smit, M. K. and R. G. Broeke, "A wavelength converter with integrated tunable laser," Integr. Photon. Res. (IPR '03), paper IMB4, Washington, 2003.
9. Nikoufard, M., "Integrated wavelength division multiplexing receivers,", Ph.D. Dissertation, Eindhoven University of Technology, 2008.
10. Silvaco ATLAS, User's Manual, SILVACO International, 2002.
11. Steenbergen, C. A. M., "High capacity integrated optical receivers,", Ph.D. Dissertation, Eindhoven University of Technology, 1997.
12. De Paola, F. M., V. D'Alessandro, A. Irace, J. H. den Besten, and M. K. Smit, "Novel optoelectronic simulation strategy of an ultra-fast InP/InGaAsP modulator," Optics Communications, Vol. 256, 326-332, 2005.
doi:10.1016/j.optcom.2005.06.089
13. Den Besten, J. H., "Integration of multiwavelength lasers with fast electro-optical modulator,", Ph.D. Dissertation, Eindhoven University of Technology, 2004.
14. EMIS Data reviews Series No. 6, Properties of Indium Phosphide, INSPEC, 1991.
15. Pascher, W., J. den Besten, D. Caprioli, R. van Dijk, X. J. M. Lei-jtens, and M. K. Smit, "Modelling and characterization of a travelling-wave electro-optic modulator on InP," Advances in Radio Science, Vol. 1, 67-71, 2003.
doi:10.5194/ars-1-67-2003
16. Nikoufard, M. and S. N. Ghafouri, "Symmetric twin-waveguide photodetector on semi-insulating InP substrate at 1.55 μm wavelength," Journal of Optics, Vol. 13, 055502, 2011.
doi:10.1088/2040-8978/13/5/055502
17. Alping, A., "Waveguide pin photodetectors: Theoretical analysis and design criteria," IEE J. of Optoelectronics, Vol. 136, No. 3, 177-182, 1989.
doi:10.1049/ip-j.1989.0032