Vol. 46

Latest Volume
All Volumes
All Issues
2013-12-13

Two-Dimensional Angles Estimation Method and Its Improved Methods for Single Source with a Sparse Array

By Jia-Jia Jiang, Fa-Jie Duan, Yan-Chao Li, and Xiang-Ning Hua
Progress In Electromagnetics Research C, Vol. 46, 41-50, 2014
doi:10.2528/PIERC13110304

Abstract

Based on two orthogonal linear sparse arrays (LSA) which consist of the coupled-sensors (CSs), a high resolution and no ambiguity (HRNA) method is proposed to estimate the two-dimensional (2D) angles of single source. The HRNA method first constructs a new covariance matrix to achieve no ambiguity independent angles estimation by using the covariance matrix generated by each LSA, and then computes joint elevation and azimuth angles by utilizing both the estimated independent angles and triangular relationship. For large array aperture of the LSA, the HRNA method earns a high angle resolution; however, its independent angles estimation accuracy is slightly lower than the multiple signal classification (MUSIC) with a uniform linear array (ULA). In order to enhance the independent angle estimation performance, first improved HRNA (FI-HRNA) method is developed based on the HRNA and MUSIC methods. Further, in order to decrease the computational cost, second improved HRNA (SI-HRNA) method is presented based on FI-HRNA and MUSIC methods. The proposed SI-HRNA method obtains high angle resolution, high angle estimation accuracy and low computational load. In addition, the spacing between two adjacent CSs is not limited, and thus the angle resolution and estimation accuracy can be set according to practical demand. Numerical experiment and comparison with the other existing algorithms verify the effectiveness and superior performance of the method proposed in this paper.

Citation


Jia-Jia Jiang, Fa-Jie Duan, Yan-Chao Li, and Xiang-Ning Hua, "Two-Dimensional Angles Estimation Method and Its Improved Methods for Single Source with a Sparse Array," Progress In Electromagnetics Research C, Vol. 46, 41-50, 2014.
doi:10.2528/PIERC13110304
http://test.jpier.org/PIERC/pier.php?paper=13110304

References


    1. Ying, D. W. and Y. H. Yan, "Robust and fast localization of single speech source using a planar array," IEEE Signal Processing Letters, Vol. 20, No. 9, 909-912, 2013.
    doi:10.1109/LSP.2013.2266337

    2. Cheung, K. W., H. C. So, W. K. Ma, and Y. T. Chan, "Least squares algorithms for time-of-arrival-based mobile location," IEEE Transactions on Signal Processing, Vol. 52, No. 4, 1121-1130, 2004.
    doi:10.1109/TSP.2004.823465

    3. Stoica, P. and J. Li, "Source localization from range-difference measurements," IEEE Signal Processing Magazine, Vol. 23, No. 6, 63{39, Processing Magazine, Vol. 23, No. 6, 63-39, 2006.
    doi:10.1109/SP-M.2006.248717

    4. Sayed, A. H, A. Tarighat, and N. Khajehnouri, "Network-based wireless location: Challenges faced in developing techniques for accurate wireless location information," IEEE Signal Processing Magazine, Vol. 22, No. 4, 24-40, 2005.
    doi:10.1109/MSP.2005.1458275

    5. Beck, A. and D. Pan, \On the solution of the GPS localization and circle fitting problems , SIAM J. Optim., Vol. 22, No. 1, 108-134, 2012.
    doi:10.1137/100809908

    6. Heidenreich, P., A. M. Zoubir, and M. Rubsamen, "Joint 2-D DOA estimation and phase calibration for uniform rectangular arrays," IEEE Transactions on Signal Processing, Vol. 60, No. 9, 4683-4693, 2012.
    doi:10.1109/TSP.2012.2203125

    7. Doroslovacki, M. I. and E. G. Larsson, "Nonuniform linear antenna arrays minimising Cramer-Rao bounds for joint estimation of single source range and direction of arrival," IEE Proc. | Radar Sonar Navig, 152-4, 2005.
    doi:10.1137/070698014

    8. Beck, A., M. Teboulle, and Z. Chikishev, "Iterative minimization schemes for solving the single source localization problem," SIAM J. Optim., Vol. 19, No. 3, 1397-1416, 2008.

    9. Reed, J. D, R. M. Buehrer, and C. R. C. M. da Silva, "An optimization approach to single-source localization using direction and range estimates," IEEE Global Telecommunications Conference, 1-5, 2009.
    doi:10.1109/TSP.2013.2264814

    10. Qi, H.-D., N. Xiu, and X. M. Yuan, "A lagrangian dual approach to the single-source localization problem," IEEE Transactions on Signal Processing, Vol. 61, No. 15, 3815-3826, 2013.
    doi:10.1049/el.2013.1210

    11. Jiang, J. C., P. Wei, and L. Gan, "Source location based on independent doublet array," Electronics Letters, Vol. 49, No. 14, 2013.

    12. Wu, Y. T. and H. C. So, "Simple and accurate two-dimensional angle estimation for a single source with uniform circular array," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 78-80, 2008.
    doi:10.1109/LAWP.2012.2213792

    13. Liao, B., Y.-T. Wu, and S.-C. Chan, "A generalized algorithm for fast two-dimensional angle estimation of a single source with uniform circular arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 984-986, 2012.
    doi:10.1109/PIMRC.2011.6139850

    14. Bellili, F., S. Affes, and A. Stephenne, "Second-order moment-based direction finding of a single source for ULA systems," 2011 IEEE 22nd International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), 1944-1947, 2011.
    doi:10.1109/TIT.2011.2111710

    15. Bianchi, P., M. Debbah, M. Maida, and J. Najim, "Performance of statistical tests for single-source detection using random matrix theory," IEEE Transactions on Information Theory, Vol. 57, No. 4, 2400-2419, 2011.
    doi:10.1109/SSP.2011.5967645

    16. Gazzah, H. and J.-P. Delmas, "Spectral efficiency of beamforming-based parameter estimation in the single source case," 2011 IEEE Statistical Signal Processing Workshop (SSP), 153-156, 2011.

    17. Yuan, X., "Direction-finding wideband linear FM sources with triangular arrays," IEEE Transactions on Aerospace and Electronic Systems, 48-3, 2012.

    18. Schmidt, R. O., "Multiple emitter location and signal parameters estimation," IEEE Trans. on Antennas and Propagation, Vol. 34, No. 3, 267-280, 1986.
    doi:10.1109/LAWP.2007.907913

    19. Gu, J.-F. and P. Wei, "Joint SVD of two cross-correlation matrices to achieve automatic pairing in 2-D angle estimation problems," IEEE Antennas and Wireless Propagation Letters, Vol. 6, 553-556, 2007.
    doi:10.1109/SPECT.1988.206185

    20. Bresler, Y., "Maximum likelihood estimation of a linearly structured covariance with application to antenna array processing," ASSP Workshop on Spectrum Estimation Model., 172-175, 1988.
    doi:10.1109/29.32276

    21. Roy, R. and T. Kailath, "ESPRIT --- Estimation of signal parameters via rotational invariance techniques," IEEE Trans. on Acoust., Speech, Signal Process., Vol. 37, 984-995, 1989.
    doi:10.1109/APS.2010.5560953

    22. Porozantzidou, M. G. and M. T. Chryssomallis, "Azimuth and elevation angles estimation using 2-D music algorithm with an L-shape antenna," 2010 IEEE Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2010.

    23. Jiang, J. J., D. Fajie, and C. Jin, "Three-dimensional localization algorithm for mixed near-field and far-¯eld sources based on ESPRIT and MUSIC method," Progress In Electromagnetics Research, Vol. 136, 435-456, 2013.

    24. Cheng, S.-C. and K.-C. Lee, "Reducing the array size for DOA estimation by an antenna mode switch technique," Progress In Electromagnetics Research, Vol. 131, 117-134, 2012.

    25. Liang, J. and D. Liu, "Two L-shaped array-based 2-D DOAs estimation in the presence of mutual coupling," Progress In Electromagnetics Research, Vol. 112, 273-298, 2011.
    doi:10.2528/PIER10052811

    26. Li, Y. and H. Ling, "Improved current decomposition in helical antennas using the ESPRIT algorithm," Progress In Electromagnetics Research, Vol. 106, 279-293, 2010.