Vol. 46

Latest Volume
All Volumes
All Issues
2014-01-06

Bandwidth Improvement of Reflectarrays Using Single-Layered Double Concentric Circular Ring Elements

By Lu Guo, Peng Tan, and Tan-Huat Chio
Progress In Electromagnetics Research C, Vol. 46, 91-99, 2014
doi:10.2528/PIERC13111108

Abstract

In an effort to improve the bandwidth of the single layer reflectarray, this paper investigates the use of double concentric circular ring elements arranged in a range of sub-wavelength grids on a single layer of substrate. Compared to the traditional λ/2 grid arrangements, when the radiating elements are arranged in grids less than λ/2, the reflected phase is more uniform over a wider frequency bands when radiating elements' parameters are varied; albeit with a reduced reflected phase range. The double concentric circular ring elements used here also allow an additional degree-of-freedom to improve the bandwidth. A comprehensive investigation on reflectarrays' performance with various grid spacings is conducted and the trade-off between the reflectarray gain and bandwidth is also discussed. Based on the concentric ring element, four offset-fed 0.43 m×0.43 m reflectarrays centered at 10 GHz with various element periodicities, namely λ/2, λ/3, λ/4 and λ/5 grids, are designed and developed. The measured results show that among the four reflectarrays, the one with λ/4 grid spacing achieves the broadest 2-dB gain bandwidth of 33% with an aperture efficiency of 36.2%.

Citation


Lu Guo, Peng Tan, and Tan-Huat Chio, "Bandwidth Improvement of Reflectarrays Using Single-Layered Double Concentric Circular Ring Elements," Progress In Electromagnetics Research C, Vol. 46, 91-99, 2014.
doi:10.2528/PIERC13111108
http://test.jpier.org/PIERC/pier.php?paper=13111108

References


    1. Huang, J. and J. A. Encinar, "Reflectarray antennas," John Wiley & Sons, 2008.

    2. Li, Q. Y., Y. C. Jiao, and G. Zhao, "A novel microstrip rectangular-patch/ring combination reflectarray element and its application," IEEE Antennas Wireless Propag. Lett., Vol. 8, 1119-1122, 2009.
    doi:10.1109/LAWP.2009.2033620

    3. Li, R. H., L. Chen, X. T. Gu, and X. W. Shi, "A novel element for broadband reflectarray antennas," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 11--12, 1554{-1563, 2011.
    doi:10.1163/156939311797164891

    4. Encinar, J. A. and J. A. Zomaza, "Broadband design of three-layer printed reflectarrays," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 7, 1662-1664, 2003.
    doi:10.1109/TAP.2003.813611

    5. Encinar, J. A., "Design of two-layer printed reflectarrays using patches of variable size," IEEE Transactions on Antennas and Propagation, Vol. 49, No. 10, 1403-1410, 2001.
    doi:10.1109/8.954929

    6. Li, Y., M. E. Biakowski, K. H. Sayidmarie, and N. V. Shuley, "81-element single-layer reflectarray with double-ring phasing elements for wideband applications," 2010 IEEE Antennas and Propagation Society International Symposium, 1-4, 2010.
    doi:10.1109/APS.2010.5562320

    7. Li, Y., K. H. Sayidmarie, and N. V. Shuley, "Single-layer microstrip reflectarray with double elliptical ring elements for bandwidth enhancement," Microwave and Optical Technology Letters, Vol. 53, No. 5, 1083-1087, 2011.
    doi:10.1002/mop.25912

    8. Robinson, A. W., M. E. Bialkowski, and H. J. Song, "A passive reflect-array with duaal-feed microstrip patch elements," Microwave and Optical Technology Letters, Vol. 23, No. 5, 295-299, 1999.
    doi:10.1002/(SICI)1098-2760(19991205)23:5<295::AID-MOP11>3.0.CO;2-H

    9. Robinson, A. W., M. E. Bialkowski, and H. J. Song, "An 137-element active reflect-array with dual-feed microstrip patch elements," Microwave and Optical Technology Letters, Vol. 26, No. 3, 147-151, 2000.
    doi:10.1002/1098-2760(20000805)26:3<147::AID-MOP3>3.0.CO;2-D

    10. Pozar, D. M., "Wideband reflectarrays using artificial impedance surfaces," Electron. Lett., Vol. 43, No. 3, 148-149, 2007.
    doi:10.1049/el:20073560

    11. Nayeri, P., F. Yang, and A. Z. Elsherbeni, "Bandwidth improvement of reflectarray antennas using closely spaced elements," Progress In Electromagnetics Research C, Vol. 18, 19-29, 2011.

    12. Nayeri, P., F. Yang, and A. Z. Elsherbeni, "Broadband reflectarray antennas using double-layer sub-wavelength patch elements," IEEE Antennas Wireless Propag. Lett., Vol. 9, 1139-1142, 2010.
    doi:10.1109/LAWP.2010.2094178

    13. Bialkowski, M. and K. H. Sayidmarie, "Investigations into phase characteristics of a single-layer re°ectarray employing patch or ring elements of variable size," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 11, 3366-3372, 2008.
    doi:10.1109/TAP.2008.2005470

    14. Bialkowski, M. and K. H. Sayidmarie, "Phasing characteristics of variable size double rings of square or circular shape for design of a single layer microstrip reflectarray," 17th International Conference on Microwave, Radar and Wireless Communications, 1-4, 2008.

    15. Sayidmarie, K. H. and M. Bialkowski, "Investigations into unit cells offering an increased phasing range for single-layer printed reflectarrays," Microwave and Optical Technology Letters, Vol. 50, No. 4, 1028-1032, 2008.
    doi:10.1002/mop.23285

    16. Targonski, D. M. Pozar and D. M. Pozar, "Analysis and design of a microstrip reflectarray using patches of variable size," Antennas Propag. Soc. Int. Symp. Dig., 1820-1823, 1994.